Lorenz-gauge reconstruction in electromagnetism with sources

Stephen R. Green Albert Einstein Institute Postdam

with V. Toomani, S. Hollands, ...

Capra Meeting
Perimeter Institute / online
June 9, 2021

Status of field reconstruction in Kerr

• Starting from Teukolsky solutions, use a Hertz potential to generate corresponding A_a or h_{ab} .

Maxwell

	Radiation gauge	Lorenz gauge
no sources	✓ CCK (1970s)	✓ Dolan (2019), Wardell, Kavanagh (2020)
sources	√ Toomani, Hollands (2021)	This talk

Einstein

	Radiation gauge	Lorenz gauge
no sources	√ CCK (1970s)	×
sources	✓ Green, Hollands, Zimmerman (2020)	×

Preliminaries: exterior calculus

- Differential p-form $\omega_{a_1...a_p} = \omega_{[a_1...a_p]}$
 - totally antisymmetric
- Wedge product $(\alpha \wedge \beta)_{ab} = 2\alpha_{[a}\beta_{b]}$
 - antisymmetrized product
- Exterior derivative $(d\omega)_{ba_1...a_p} = (p+1) \nabla_{[b}\omega_{a_1...a_p]}$
 - antisymmerized derivative; $d^2 = 0$
- Hodge dual $(*\alpha)_{abc} = \epsilon_{abc}^{d} \alpha_d$
 - ** = + 1
- Co-differential $\delta = *d*$
 - divergence; $\delta^2 = 0$

Electromagnetism

- 2-form field F_{ab}
- Maxwell equations

$$dF = 0$$

$$\delta F = j$$

• Maxwell potential 1-form A_a

$$F = dA$$

Automatically $dF = d^2A = 0$

Bivector basis

• Decompose F_{ab}

 (l, n, \bar{m}, m) is NP tetrad

- X, Y, Z are "anti-self-dual": *X = iX
- $\bar{X}, \bar{Y}, \bar{Z}$ are "self-dual": $*\bar{X} = -i\bar{X}$

Exterior calculus and Teukolsky

• At level of forms, Teukolsky decoupling operator is simply $S \equiv \zeta^{-2} d\zeta^2$, $\zeta = \Psi_2^{-1/3}$

Teukolsky equations
$$\zeta = \Psi_2^{TT}$$

$$\mathcal{L}_2^{-2} d\zeta^2 \delta F^A = X \left[\frac{1}{2} \mathcal{O}(\phi_0) \right]$$
Fackerell-Ipser equation
$$+ Y \left[\frac{1}{2} \Theta^a \Theta_a \phi_1 + (B + B') \cdot \Theta \phi_1 + 2(B \cdot B') \phi_1 + 2\Psi_2 \phi_1 \right]$$

$$+ Z \left[\frac{1}{2} \mathcal{O}'(\phi_2) \right]$$

$$- \bar{X} \zeta^{-2} \left\{ \delta'^2 (\zeta^2 \phi_0) + b^2 (\zeta^2 \phi_2) - 2[b \delta' - \tau' b + (b \tau') - (\delta' \rho)](\zeta^2 \phi_1) \right\}$$

$$- \bar{Y} \zeta^{-2} \left\{ (b' \delta' + \bar{\tau} b')(\zeta^2 \phi_0) + (b \delta + \bar{\tau}' b)(\zeta^2 \phi_2) - [\delta \delta' + b b' + \dots](\zeta^2 \phi_1) \right\}$$

$$- \bar{Z} \zeta^{-2} \left\{ b'^2 (\zeta^2 \phi_0) + \delta^2 (\zeta^2 \phi_2) - 2[b' \delta + \dots](\zeta^2 \phi_1) \right\}$$

(related to)

Teukolsky-Starobinski identities

Exterior calculus and Teukolsky

• With $F = dA \equiv \mathcal{T}A$, the sourced Maxwell equation is

$$j = \delta F = \delta dA \equiv \mathscr{E}A$$

• In terms of operators on forms, the (electromagnetic) Wald identity is trivial:

$$\zeta^{-2}d\zeta^2$$
 \circ $\delta d = \zeta^{-2}d\zeta^2\delta$ \circ d \mathcal{S}

• This (and its adjoint) can now be used in reconstruction.

Lorenz-gauge reconstruction

- Source-free case (Dolan, Wardell, Kavanagh) easy using exterior calculus:
 - Hertz 2-form $\mathcal{H} = \Phi_0 X + \Phi_2 Z$ $\longrightarrow A = \delta \zeta \mathcal{H}$
 - Automatically Lorenz gauge $\delta A = \delta^2 \zeta \mathcal{H} = 0$

• Field strength
$$F = dA$$

$$= d\delta\zeta\mathcal{H}$$

$$= \zeta^{-1}d\zeta^2\delta\mathcal{H} + X\pounds_\xi\Phi_0 - Z\pounds_\xi\Phi_2 + Y(C'\cdot\Theta\Phi_0 + C\cdot\Theta\Phi_2)$$

$$\zeta\mathcal{O}$$
 anti-self-dual

Lorenz-gauge reconstruction

$$F = dA$$

$$= d\delta\zeta\mathcal{H}$$

$$= \zeta^{-1}d\zeta^{2}\delta\mathcal{H} + X\mathcal{L}_{\xi}\Phi_{0} - Z\mathcal{L}_{\xi}\Phi_{2} + Y(C' \cdot \Theta\Phi_{0} + C \cdot \Theta\Phi_{2})$$

$$= \Delta \nabla \mathcal{H} = \frac{1}{2}X\mathcal{O}(\Phi_{0}) + \frac{1}{2}Z\mathcal{O}'(\Phi_{2})$$

$$- \bar{X}\zeta^{-2} \left[\delta'^{2}(\zeta^{2}\Phi_{0}) + \beta^{2}(\zeta^{2}\Phi_{2})\right] - \bar{Z}\zeta^{-2} \left[\beta'^{2}(\zeta^{2}\Phi_{0}) + \delta^{2}(\zeta^{2}\Phi_{2})\right]$$

$$- \bar{Y}\zeta^{-2} \left[(\beta'\delta' + \bar{\tau}\beta')(\zeta^{2}\Phi_{0}) + (\beta\delta + \bar{\tau}'\beta)(\zeta^{2}\Phi_{2})\right]$$

• If $(\Phi_0, -\Phi_2)$ satisfy TSI, then self-dual part of \mathscr{OH} vanishes, and F is anti-self-dual. Thus, F = -i * F = -i * dA, and

$$\delta F = *d * F = id^2 A = 0 \longrightarrow \text{solution}$$

• Consistent with inversion relations $\pounds_{\xi}\Phi_0=\phi_0$ $\pounds_{\xi}\Phi_2=-\phi_2$

Inclusion of sources

- Suppose we have a Maxwell solution (F, j).
- Hertz potential stays the same

$$\mathcal{H} = \Phi_0 X + \Phi_2 Z$$

• Potential picks up a corrector 1-form

$$A = \delta \zeta \mathcal{H} + G$$

Inversion relations

 $\mathcal{L}_{\xi}G_n = \zeta j_n$

• Similar (but more involved) calculation to source-free case.

Conclusions

- Nonzero charge current *j* can be included as a source for Lorenz gauge reconstruction in electromagnetism.
 - Corrector is related to *j* via time derivatives.
- Differential forms notation very useful in calculations.
 - Next steps: Other Lorenz gauge constructions. (Barry's talk)
 - **Next steps:** Gravitational case. Can the formalism be adapted? Take bivector components of Weyl tensor?
 - Next steps: Point particle. Reconstruct field.
- If successful, this should greatly simplify self-force calculations, by enabling use of Teukolsky equation in producing Lorenz-gauge metric perturbations.