

Amortized simulation-based inference for compact binaries

Stephen Green Albert Einstein Institute Potsdam

based on 2106.12594 (w/ **Dax**, Gair, Macke, Buonanno, and Schölkopf)

14th Edoardo Amaldi Conference on Gravitational Waves July 21, 2021

Bayesian inference for compact binaries

Posterior • Lik Gau $p(\theta|s) = \frac{p(s|\theta)p(\theta)}{p(s)}$

 Likelihood based on assumption of stationary Gaussian detector noise,

$$p(s \mid \theta) \propto \exp\left(-\frac{1}{2}\sum_{I} \left(s_{I} - h_{I}(\theta) \mid s_{I} - h_{I}(\theta)\right)\right)$$

$$(a | b) = 2 \int_0^\infty df \, \frac{\hat{a}(f)\hat{b}(f)^* + \hat{a}(f)^*\hat{b}(f)}{S_n(f)}$$

• **Prior** based on beliefs about system before looking at data,

e.g., uniform in m_1, m_2 over some range, uniformly distributed in sky

Bayesian inference for compact binaries

- **Drawbacks** of standard approach:
 - Sampling time ~ waveform generation time \implies slow
 - Requires ability to evaluate likelihood

Neural posterior estimation

- Neural Posterior Estimation:
 - Construct an inverse model $q(\theta | s)$ using a neural network called a "normalizing flow".
 - Train $q(\theta | s) \rightarrow p(\theta | s)$ using simulated data, $(\theta^{(i)}, s^{(i)}) \sim p(\theta, s)$

 $\diagdown \left\{ \begin{array}{l} \theta^{(i)} \sim p(\theta), \\ s^{(i)} \sim p(s|\theta^{(i)}) \end{array} \right.$

"A surrogate for the posterior"

Normalizing flow

Express posterior in terms of a mapping from normally-distributed variables.

Normalizing flow

Normalizing flow

Big neural networks: \approx 350 layers and 150 million parameters

Training

- + stationary Gaussian noise realizations consistent with given PSD
- Train several neural networks based on different noise level / number of detectors / distance range:

Observing run	Detectors	Distance range [Mpc]
01	HL	[100, 2000]
O2	HL	$[100, 2000] \\ [100, 6000]$
	HLV	[100, 1000]

PP plot

- 1000 injections
- Combined p-value of 0.46

GWTC-1

- Analyzed all events consistent with prior $(m_1, m_2 \ge 10 \text{ M}_{\odot})$
- LALInference MCMC in gray

GWTC-1

JS divergence vs LALInference

- Measures a "distance" between probability distributions
- JSD < 2×10^{-3} nat "indistinguishable" (i.e., difference between LI runs)

	m_1	ma	Ø	d_L	q_{j}	Q2	θ_{1}	02	ØIZ	ØJL	0 JN	Ķ	Q	б	
GW150914 -	0.8	1.1	0.2	0.8	0.2	0.3	0.5	0.5	0.1	0.3	0.8	0.2	0.7	1.4	
GW151012 -	2.7	1.6	0.1	0.9	0.4	0.2	0.5	0.5	0.1	0.1	0.6	0.1	1.4	0.5	
GW170104 -	6.4	2.6	0.2	0.4	0.7	0.1	0.7	0.4	0.1	0.1	0.3	0.3	0.8	0.6	
GW170729 -	0.9	1.5	0.4	6.3	0.2	0.2	1.0	0.8	0.2	0.3	3.4	0.3	1.2	1.2	
GW170809 -	0.5	0.8	0.1	0.5	0.2	0.1	0.4	0.4	0.1	0.5	1.4	0.2	2.2	5.5	
GW170814 -	1.2	1.3	0.2	1.5	0.2	0.2	0.4	0.3	0.2	1.4	1.4	1.2	2.5	2.0	
GW170818 -	1.6	1.3	0.2	1.1	1.0	0.2	1.9	0.5	0.1	2.4	1.8	0.4	3.8	2.4	
GW170823 -	0.5	0.6	0.1	0.9	0.2	0.2	0.4	0.2	0.2	0.2	0.5	0.2	0.4	0.4	

Conclusions and roadmap

- Reduced analysis times for generic BBH events from ≈ day to a minute, at with results nearly indistinguishable from standard codes.
- Method accounts for noise nonstationarity from event to event.
- Can use this to analyze data in real time:
 - 1. Now writing a user-friendly extensible code ("Dingo")
 - 2. Train with more sophisticated waveform models (e.g., SEOBNRv4PHM)
 - 3. Extend to binary neutron stars (requires improved data compression)
- Long term: Realistic (nonstationary / non-Gaussian) noise, LISA data analysis, populations...

Thank You