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Introduction to parameter estimation

- Bayesian inference for compact binaries:

Sample posterior distribution for system parameters 6 (masses, spins, sky
position, etc.) given detector strain data s.

likelihood prior

/

p(s|0)p(0)
p(s)

T

evidence (normalizing factor)

p@|s) =

- Once likelihood and prior are defined, right hand side can be evaluated (up to
normalization).



Introduction to parameter estimation

- Likelihood based on assumption that if the gravitational-wave signal were subtracted from
s, then what remains must be noise.

- Noise n assumed to follow stationary Gaussian distribution, i.e.,
1
n ~ p(n) « exp <—5 (n|n)>

where the noise-weighted inner product is

(alb) =2 r" af S +a(f)*b(f)

detector noise power
spectral density (PSD)

- Summed over detectors, this gives the likelihood,

1
p(s|0) x exp <—5 Z (s, — h(0)]s, — h,(9))>
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Introduction to parameter estimation

+ Prior p(0) based on beliefs about system
before looking at data,

e.g., uniform in my, m, over some range,

uniform in spatial volume,
etc.

— Qverall
— |IMRPhenom
—— EOBNR

- With prior and likelihood defined, the
posterior can be evaluated up to
normalization.

Method such as Markov chain Monte Carlo
(MCMC) is used to obtain posterior samples.

Move around parameter space, and compare
strain data s against waveform model h(6). o5 30 35 40 45 50

source
my /Mg

Image: Abbott et al (2016)



Need for new methods

- Standard method expensive:

- Many likelihood evaluations required for each independent sample

- Likelihood evaluation slow, requires a waveform to be generated

- Various waveform models (EOBNR, Phenom, ...) created as faster
alternatives to numerical relativity; reduced-order surrogate models for
even faster evaluation.

- Days to months for parameter estimation of a single event, depending on type of
event and waveform model.

Goal of this work:

Develop deep learning methods to do parameter estimation much faster. Model
the posterior distribution p(& | s) with a neural network.




Main result: very fast posterior sampling

Rest of this talk:
How did we do this?

te/s

dL/MpC

X1z




Two key ideas

1. A conditional probability distribution can be described by a neural
network.

2. The network can be trained to model a gravitational wave posterior
distribution without ever evaluating a likelihood. Instead, it only

requires samples (60, s) from the data generating process.



Introduction to neural networks

- Nonlinear functions constructed as composition of mappings:

First hidden
Input layer layer
) )
x > h’l
Gl(Wlx + bl)
xeRY h, € RM

Consists of:

1. Linear transformation
Wix + b,

2. Simple element-wise

nonlinear mapping.

x>0

E.g., Jl(a:'):{ g: 0



Introduction to neural networks

First hidden Second hidden Final hidden
Input layer layer layer layer Output layer
) M ) M) )
X > hl > h2 —_—) i — hp > y
O'I(Wlx + bl) 62(W2h1 -+ b2) O-out(Wouthp + bout)
—/ U, ; ) \___J \_JN
X E RN y E R out

- Training/test data consist of (x, y) pairs.

- Train network by tuning the weights W and biases b to minimize loss function L(y, yout)

- Stochastic gradient descent combined with chain rule (“backpropagation”) to adjust
weights and biases.
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Neural networks as probability distributions

- Since conditional probability distributions can be parametrized by functions, and
neural networks are functions, conditional probability distributions can be described
by neural networks.

E.g., multivariate normal distribution

p(zly) = N(u(y), X(y))(z)

Y (27T)n|1det Sl (2 Z (0= I )y = uj(y))>

| =

where u(y), Z(y) = NN(y).

- For this example, it is trivial to draw samples and evaluate the density.

- More complex distributions may also be described by neural networks (later in talk).
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Likelihood-free inference with neural networks

[First applied to GW by Chua and Vallisneri (2020), Gabbard et al (2019)]

- @Goal is to train network to model true posterior, as given by prior and likelihood
that we specity, i.e.,

pO|s) = purue(]s)
- Minimize expectation value (over s) of cross-entropy between the distributions

L=-— stptrue(s) Jdé’ptrue(@ | 5) log p(@] 5)

Intractable with knowing posterior for each s!

- Bayes’ theorem = P.1e(S) Piruc(@15) = Pirue(@) Prrue(S | 0)

. L=-— Jdé’ Pirue(D) st Pirue(S|60) log p(0]s)

Only requires samples from likelihood,
not the posterior!
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Likelihood-free inference with neural networks

- Loss function

L = _/deptrue(e)/dsptrue(sle) logp(é’\s)
N
1 o | | |
N Zlogp(ﬁ(z)\s(’)), where 0 ~ prrue(0), 59 ~ prrue(s]0®)
i=1

| ‘ T
T Sample strain data from

Estimate on Easy to evaluate : .
minibatch of size N from neural network generative process (likelihood)

Sample parameters from prior

- Choose network parameters that minimize L: compute gradient of L with respect to
network parameters (weights and biases) and use stochastic gradient descent.

- Never evaluate a likelihood and no need for posterior samples!
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Gravitational-wave parameter estimation

+ Chua and Vallisneri (2019) applied t
model) to gravitational waves:
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distributions can have higher moments and multimodality.



Normalizing flows

Rezende and Mohamed (2015)

- Our approach to make gravitational-wave posterior more flexible: use a normalizing
flow.

- Change of variables rule for probability distributions: if z(u) is a probability distribution,

and f : u — x is a mapping on the sample space, then in the new coordinates, the
distribution is

(it fa )
O(x1,...,Tp)

p(z) = w(f () |det

- A normalizing flow is an invertible mapping f with simple Jacobian determinant.

- If r(u) can be easily sampled and its density evaluated, and f is a normalizing flow, then
the same holds for p(x).

Typically, take (1) to be a simple base distribution, e.g., multivariate standard normal.
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Normalizing flows for gravitational waves

- To model a gravitational-wave posterior, take x — 6, and condition the flow f on strain data s.

s=h-+n

0.0

Overall
—— IMRPhenom

25 30 35 40 45 50
miource /M o

(hopetully)
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Masked autoregressive flow

Papamakarios et al (2017)

- By the product rule, an arbitrary probability distribution p(x) may be
decomposed as

p(x) = Hp(33i|5131:z'—1)

1=1

- Define an autoregressive model by restricting the form of each factor,

p(xilr1i—1) = N(pi(21:-1), exp(20(21:i-1))

e, ifu~ A(0,1)", and we set x; = pu.(x;.,_1) + u;exp a(xy.,_y),
then x ~ p(x).

- The mapping f : u — x defines a normalizing flow.
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Masked autoregressive flow

Papamakarios et al (2017)

- f satisfies properties of a normalizing flow:

1. fiumx

2. flix-u

X; = uX._1) + u;exp alxy.;_y)

Forward map recursive

Uy = [xi - ﬂi(xlzi—l)] CEXp (_ai(xlzi—1)>

o fa

a(frl, ..
det Ui
d(xl,..

X))

Inverse map nonrecursive

Simple Jacobian determinant
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Masked autoregressive flow

Papamakarios et al (2017)

- Can be implemented with a neural network by masking certain connections
that violate autoregressive property [MADE network, Germain et al (2015)]

N YN
~2AHN

- Forward flow requires n passes.
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Masked autoregressive flow

Papamakarios et al (2017)

- To achieve further generality, stack several MADE blocks, permuting components in between.

O O O

5 LL] = LUl 5 LUl
u_>§_><DE >§_><DE .................. >§_><DE_>9

2 = L = o =

Q. Q. Q
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Training

[same approach as Gabbard et al (2019)]

+ Train on (6, s) pairs:

. 0 ~ p(), 10° samples

- s~p(s|@); s=h0)+n

- h(0) : 1 second long
whitened (fixed PSD)
iInspiral-merger-ringdown
waveforms at1024 Hz,
stored in training set

- n : stationary Gaussian
noise sampled at train time

- Training time ~ 6 hours

35 Mo < mq,mg < 80 Mg,
1000 Mpc < d; <3000 Mpc,
0.60s< t. <0.85s,
0< ¢ <2,

—7.5
0.0 0.2 0.4 0.6 0.8 1.0
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Sample posterior: MAF
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- Time to draw 10,000

iIndependent samples
< 1 second.

- Posterior pretty good,

but does not properly
model ¢,
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Variational autoencoder

Kingma and Welling (2013)

- To increase flexibility further, introduce latent variables z. These must be
marginalized over to obtain posterior.

p@|s) = [p(9 |z, 9)p(z]s)dz

N/

Both described by neural networks

- This mixture of distributions is more general. To sample

() draw latent variable from variational prior z ~ p(z|$).

(i) draw parameters 8 ~ p(0|z,s).
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Variational autoencoder

Kingma and Welling (2013)

p@|s) = [p(ﬁ |z, 8)p(z|s)dz

- To train, would like to evaluate the posterior. But integral is intractable.

0z, s
- Variational autoencoder introduces third model, the recognition model p@lzs)
q(z]8,s), which is an approximation to the variational posterior /\
p(z|0,s). Z \—/9

- Training maximizes the variational lower bound on p(@| s), namely

L =Eqz10,5) l0gp(0]z, s) — Dxr (q(2]0, s)|[p(z]s))

| T

reconstruction loss KL loss

q(z|0,s)

- Applied by Gabbard et al (2019) to gravitational waves: With all 3
networks Gaussian, obtained similar performance to MAF.
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Variational autoencoder with normalizing flows

- p@|z,s)
pz|s)

q(z]0,s)
all taken to be MAFs.

m2/M®
é‘@ 6‘0 6

- Training time ~ 15 hours

- Posterior comparable to
MCMC.

te/s

dr,/Mpc




—P plot

For each one-dimensional
marginalized posterior, study
distribution of percentile
values of true parameters.

1000 different waveforms +
noise realizations.

CDF(p)
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Adding aligned spins and inclination

d;,/Mpc te/s o

X1z

0N

ma /Mg
% %% O‘o &

Prior ranges

35 Mg <my,mo < 80 Mg,
1000 Mpc < dr <3000 Mpc,
0.65s < t. <0.85s,
0< ¢ <2m,

—1 S X1z X2z S 17
0< O,y <.

Slightly larger network

Sampling time now ~ 2
seconds for 10,000
samples.
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—P plot
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~ 30 minutes to
generate all
samples
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Next steps

- Expand to full 15D parameter space: multiple detectors, sky position, non-
aligned spins.

- Allow the noise PSD to vary from event to event.

- Waveform “compression” to allow lower mass BBH, and BNS events. These
iInvolve longer waveforms, and higher sampling frequency.

- Try to reduce size of training set.
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Conclusions

- For single detector, aligned spin binaries, neural networks are capable of modeling multimodal
p0]s).

- Training is likelihood-free, requiring only (8, s) pairs from the data generative process.

- After training, < 2 seconds to produce 10,000 independent samples. Compares to days for
standard methods.

- Model with CVAE and MAF has best performance:
- Successfully models all parameters, including degeneracies.
- Posterior comparable to MCMC.
* Passes P—P plot statistical tests.

- Ongoing work to develop into a complete parameter estimation tool.

THANK YOU
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