Teukolsky formalism for nonlinear Kerr perturbations

Stephen R. Green Albert Einstein Institute Potsdam

based on Class. Quantum Grav. **37** (2020) 075001 (arXiv:1908.09095) with S. Hollands and P. Zimmerman

"23rd Capra Meeting on Radiation Reaction in General Relativity" University of Texas at Austin / Internet June 24, 2020

Motivation

$$\mathcal{E}^{\mathrm{Kerr}}(h_{ab}) = T_{ab}$$

- Calculate metric perturbations from point sources in Kerr in a Teukolsky framework.
- Standard CCK reconstruction fails in the presence of sources:
 - No first-order solution in the "shadow" of the source [Ori (2003)].
 - Second-order source nonvanishing everywhere

 No solution anywhere.

Teukolsky operator formalism

 In Kerr, the linearized Einstein equation reduces to a separable wave equation for a curvature scalar

 $\mathcal{O}(\psi_0) = 2\left[(\mathbf{b} - 4\rho - \bar{\rho})(\mathbf{b}' - \rho') - (\eth - 4\tau - \bar{\tau}')(\eth' - \tau') - 3\Psi_2 \right] \psi_0$

Hertz potential

- Typically need metric perturbation h_{ab} , not just Weyl scalar ψ_0 .
- Adjoint identity:

$$\mathcal{SE} = \mathcal{OT} \longrightarrow \mathcal{ES}^\dagger = \mathcal{T}^\dagger \mathcal{O}^\dagger$$

 Enables metric construction in vacuum

$$\mathcal{O}^\dagger \Phi = 0$$
 s=-2 Teukolsky equation $\Phi = ext{Hertz potential}$ $\Phi = ext{Hertz potential}$ $h_{ab} = ext{Re}\,\mathcal{S}^\dagger \Phi$

Two problems

- 1. Inversion $\psi_0 \to \Phi$ requires integration of 4th order ordinary differential equation, subject to adjoint Teukolsky for Φ .
- 2. Vacuum only: h_{ab} in ingoing radiation gauge (IRG), and $\mathcal{E}_{ll}(h^{\mathrm{IRG}})=0$

Main result

· We show that h_{ab} satisfying $\mathcal{E}_{ab}(h) = T_{ab}$ can be decomposed as

 obtained by integrating 3 decoupled ordinary differential equations along outgoing principal null directions

6

- 1. Make a gauge transformation to set $h_{ab}l^b=0$ (always possible).
- 2. Pick \mathbf{x}_{ab} to cancel off problematic components of T_{ab} ,

$$(T_{ab} - \mathcal{E}_{ab}(x)) l^b = 0$$

- Ansatz $x_{ab} = 2m_{(a}\bar{m}_{b)}x_{m\bar{m}} 2l_{(a}\bar{m}_{b)}x_{nm} 2l_{(a}m_{b)}x_{n\bar{m}} + l_{a}l_{b}x_{nn}$
- Obtain nested set of ODEs along l^a :

(i)
$$\{b(b-\rho-\bar{\rho}) + 2\rho\bar{\rho}\}x_{m\bar{m}} = T_{ll}$$

$$\longrightarrow$$
 obtain $x_{m\bar{m}}$

(ii)
$$\frac{1}{2} \{ b(b-2\rho) + 2\bar{\rho}(\rho - \bar{\rho}) \} x_{nm}$$

$$= T_{lm} - \frac{1}{2} \{ (b+\rho - \bar{\rho})(\eth + \bar{\tau}' - \tau) + 2\bar{\tau}'(b-2\rho) - (\eth - \tau - \bar{\tau}')\bar{\rho} + 2\rho\tau \} x_{m\bar{m}}.$$

 \longrightarrow obtain x_{nm}

 \longrightarrow obtain x_{nn}

3. Redefine $h_{ab} \rightarrow h_{ab} - x_{ab}$

Then:
$$h_{ab}l^b=0$$
 and $\mathcal{E}_{ab}(h)=S_{ab}\equiv T_{ab}-\mathcal{E}_{ab}(x)$
$$S_{ab}l^b=0$$

4. Assume T_{ab} smooth with compact support, and h_{ab} retarded solution.

$$0 = \mathcal{E}_{ll}(h)$$

$$= (b - 2\rho)(b + \rho - \bar{\rho})h_{m\bar{m}}$$

$$\implies h_{\bar{m}m} = 0 \text{ everywhere}$$

Metric is in IRG automatically!

5. Finally, show

$$h_{ab} = \operatorname{Re} \mathcal{S}_{ab}^{\dagger} \Phi$$

for some Hertz potential Φ .

I.e., solve this ODE first for Φ $h_{\bar{m}\bar{m}} = -\frac{1}{2}(\mathfrak{b}-\rho)(\mathfrak{b}+3\rho)\Phi,$ $h_{\bar{m}n} = -\frac{1}{4}\{(\mathfrak{b}-\rho+\bar{\rho})(\mathfrak{d}+3\tau)+(\mathfrak{d}-\tau+\bar{\tau}')(\mathfrak{b}+3\rho)\}\Phi,$ $h_{nn} = -\frac{1}{2}(\mathfrak{d}-\tau)(\mathfrak{d}+3\tau)\Phi+\mathrm{c.c.}$ these hold near \mathscr{H}^- automatically, and

these hold near \mathcal{H}^- automatically, and everywhere by similar arguments to previous slide

Teukolsky equation for Φ

We established the decomposition,

$$h_{ab} = \mathcal{L}_{\xi} g_{ab} + \dot{g}_{ab} + x_{ab} + \operatorname{Re} \mathcal{S}_{ab}^{\dagger} \Phi$$

Apply Einstein operator and use operator identity,

$$\Longrightarrow \operatorname{Re} \mathcal{T}_{ab}^{\dagger} \mathcal{O}^{\dagger} \Phi = S_{ab}$$

- · Thus $\mathcal{O}^{\dagger}\Phi=\eta$ with source satisfying $\operatorname{Re}\mathcal{T}_{ab}^{\dagger}\eta=S_{ab}$
- · Obtain η by integrating $\bar{m}\bar{m}$ component,

$$\frac{1}{4}(\mathbf{b} - \rho)(\mathbf{b} - \rho)\eta = S_{\bar{m}\bar{m}}$$

Summary

- · To obtain metric perturbation solving $\mathcal{E}_{ab}(h) = T_{ab}$
 - 1. Integrate 3 ODEs along outgoing null geodesics to obtain *corrector tensor* x_{ab} .
 - 2. Integrate 1 ODE along outgoing null geodesics to obtain source η .

- 3. Solve adjoint Teukolsky equation $\mathcal{O}^\dagger \Phi = \eta$
- 4. Set $h_{ab} = x_{ab} + \operatorname{Re} \mathcal{S}_{ab}^{\dagger} \Phi$
- Alternatively, start with Teukolsky equation for Weyl scalar ψ_0 , obtain Φ by integrating radial ODE, and add corrector tensor at the end.

Comments

- Assumptions on T_{ab} :
 - · Proof follows also for distributional T_{ab} (e.g., point particle).
 - Compact support can be relaxed to sufficiently fast decay at \mathcal{H}^- .
- Point particle: Algorithm gives distributional solution to linearized Einstein, in contrast to standard approaches that fail along distributional string. (Peter's talk, next)
- Other applications to quasinormal mode interactions, perturbative quantum gravity.

