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Motivation

Mode expansions are useful tools as foundations for nonlinear and variational
studies.

E.g., talk by Oleg on modes of global AdS

Normal modes of self-adjoint systems are complete and orthonormal. We can project

equations into mode space.
“bound states”

With outgoing radiation condition imposed at boundaries, obtain quasinormal modes

with w € C. “resonance states”

Physically relevant boundary conditions for black holes
and asymptotically flat spacetimes.

Not in general complete, and not in L* UA\/\/\\/\/\/ AVAV/\/AV/\\} .




Motivation

Although not complete, for much of
black hole ringdown, quasinormal modes ; Quasinormal
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Credit: Nollert (1999)

Possible applications:
Near-extreme Kerr

Superradiant instability of massive fields in Kerr

Kerr-AdS



Summary of results

Main development: inner product —— bilinear form

Consider perturbations of a background Kerr spacetime. We define a symmetric

bilinear form ({ - , - )) on Weyl scalars (complex linear in both entries) with the
following properties:

- the time-evolution operator is symmetric with respect to ({ -, - )),

({ -, )) is finite on quasi-normal modes.

- It follows that quasinormal modes with different frequencies are orthogonal
with respectto ({ -, - )).

Our bilinear form is based on earlier work by Leung, Liu and Young (1994) on
quasinormal modes of open systems.
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Kerr geometry

2M AMar sin® 0 )Y A
ds? — (1 — r) dt? + “;Sm dtd — Zdr® — £d6? — & sin’ 0o

A =1%+a%—2Mr
> = r? + a?cos? ¥,

A = (r* 4 a*)? — Aa®sin® 0

- Two commuting continuous symmetries. Generated by Killing vectors

t“=(0lan)¢,  @“=(d/dp)*

Discrete t—¢ reflection symmetry J: (¢,7,0,¢) — (—t,1,0, — ¢)

Acting by the push-forward on tensors, J anti-commutes as an operator with
symmetries,

£J=—JE, £,J=-JL,



Geroch-Held-Penrose (GHP) formalism

- Kerr is Petrov type D <= 2 repeated principle null directions.

Defines Newman-Penrose null tetrad (14, n%, m“, m“) aligned with PNDs.

- GHP (1973) developed a framework for writing the Einstein equation such that it transforms
covariantly with respect to remaining tetrad freedom.

n— APAn <= 1 has GHP weights {p, q}

- Key GHP covariant operators:

_|_ —
. Derivative: ©,=V_— %nbvalb + %n‘fzb A/
- - . I, — f pT+q ap.l pP—4q_ ap
- Lie derivative: £ = — Tn glg T Tm My
- t—¢ reflection: « = ordinary reflection combined with GHP transformation

= GHP prime



Teukolsky equation

- Perturbations of Kerr described by y, or y,. Teukolsky (1972) showed that linearized
equations decouple and separate.

(b—4p—p)(D' —p) — (@ — 47 —7) (@ —7') = 3W2] tpp = 0
l In terms of ®, (Bini et al, 2002)

(§%(©, + 4B,) (O + 4By) — 16W5] by = 0

N

Ba — _(pna — Tma)

O(2o)

- Resembles equation for charged scalar field

: ‘P54/3l//4 satisfies adjoint equation

Ot (1ho) = [g* (O — 4B,)(Op — 4By) — 16W,] (W5 *?4y) = 0



Lagrangian and symplectic form

. O and O" equations derive from Lagrangian (Toth, 2018)

L(T,T) = {gab(@a +4B,)T (O — 4By)Y + 16U, T | ¢

~/

by independently varying Y = ‘P54/31//4, Y =y

- Given Cauchy surface 2 and Lagrangian obtain symplectic form

~ - H-l—
Wslg; (T1,71), (Ta, T2)]

~

— [ €gave [T2(@d —4BYHY, — T, (0¢ + 4BH)T,
h

—T (0% — 4B Yy + Yo (0% + 4B T,
= [y, [TQ, T, — 1y [Tlv To]

. HZ[Y, Y | conserved on solutions, independent of precise choice of 2.



Phase space and Hamiltonian

- Boyer-Lindquist slices, with “ Kerr time-translation Killing vector field.
Use GHP covariant Lie derivative L.

- Canonical momentum 1+ g+
w = 802{ =vV—hv" (0, —4B,) T
O(L:Y) 0

- Legendre transform — Hamiltonian

— Hamilton’s equations
b ( > B ( )
w w

2/3 a a
sMY/3(W2/3 _2¢aB.) + N%(©, + 2sB,) \/%_h

B (x/h (h2 (O, + 25B,)N (O + 25By) — 4s2NWy|  sMY/3(W3/% — 26%B,) + (O, + 25B,) N°

with

|
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Silinear form

For GHP scalars Y = {—4,0},Y = {4,0} with O7(Y) = 6(Y) = 0, we have the
conserved quantity

My [T, 7] = /Z (T,

:/edabc
>
= /(3)6 (Tw — T@)

- We would like to define bilinear form on two weight {—4,0} scalars.

=

)

T(© — 4BHYT — (O + 4Bd)ﬁ’r]

1

Require mapping from ker © — ker O". # t— ¢ reflection

O, 2 g+ = wy? 7+ 0O




t— @ reflection

- Show O‘I’;l/gj* — ‘I’;l/gj*OT :

OUy° T = [g%(O4 + 4B,) (O + 4B,) — 16W,] W3/ % 7
— T [¢°(04 + 4B.) (0 + 4B}) — 16W,] ¥/
— U3 ° T [97%(B0 — 4B,)(0) — 4By) — 160,]
_ y¥3 70t

- So \Il;l/gj* . ker OT — ker O
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SBilinear form (compact support)

-+ For Y, Y, = {—4,0} of on X in ker O, define

(Y1, Ta)) = Mg [W5° T, To]

— / 6dabc 4/3 [(j T )( 4Bd)T2 o TZJ*(@d
X

:/ yi/3 (T Y1)ws + VoI Fwo]
>

- |t can be shown that:

i) ((T1,T2)) = ((T1,T2))
(i) (BT, To)) = ((T1, £ T2))
(iii) ((T1,Y2)) is independent of precise choice of X%

- But ({ -, - )) is divergent on quasinormal modes!

— 4BY)Y ]
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Silinear form (noncompact support)

- For noncompact support data, try to prove symmetry

(LT, To)) = ((T1, L To)) M It

on solutions.

Must keep track of boundary terms.

- On solutions, Cartan’s magic formula
— Lrx=d(t-n) since dm=0.

Integrate over partial Cauchy surface — J

£x(PP 7Y, Y, = J t-a(PP 7Y, Y,)
S

0S

Sovtan [ R@PTLTL ) - [ DN 1T, ~ 4B
g oS

:/ m(Wy 2 T Ty, Ly Ta) — / DN H(TT1)r (4 — 4Bg) T
S oS
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Silinear form (outgoing radiation)

- Augment bilinear form with boundary terms such that symmetry of L; holds.

- Outgoing radiation condition:

1
—1/4,.a . 1/4 .
A r*(O, —4B,)(A/*Y) — \/Thw on 05, as S — X 1+ f_I_

l.e.,
n®(0, — 4B,)(AY*T) — 0, as T — T4 ‘ 30
14(04 — 4B,)(AY4T) — 0, as r — 00

- For Y, Y, satisfying the
define

((T1,YT2)) = lim {HS[@;‘/Sjn,TZ]+/

@3/3(7T1)T2}
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SBilinear form (outgoing radiation)

({(T1,T2)) = lim {HS[\Pg/ngl,TQ] +/

4/3

- Boundary terms act as a regulator!

- In asymptotic region where outgoing radiation condition holds, the volume integrand
becomes exact. Pulled back to surface S,

T(UP T, Ty) ~ d [—@)e\p‘;/ 3(jT1)T2]

N

volume integrand boundary integrand

- As we take limit, any additional contribution from larger volume integration exactly
counterbalanced by pushing the boundary terms outward.

- Can show that bilinear form satisfies all the other desired properties.
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Quasinormal modes

- Quasinormal mode Y = (;) with frequency w, satisfies, on phase space,
HY = —wY

subject to outgoing radiation condition.

- Boundary terms in bilinear form precisely cancel divergence in integral to
give finite product between quasinormal modes.

- Let Y, and Y, be quasinormal modes with frequencies @, ®,. Then
either ((Y,,Y,)) = 0 or w; = w,.

Proof: By symmetry of time-evolution operator,

0=(Y1,HY?2)) = (HY1,Y32)) = i(w2 —w1)({(Y1,Y?2))

17



Quasinormal modes

- Separated form of mode solution
STﬁmw — e_iwt+im¢sR€mw (r)ssﬁmw (‘9)

- Teukolsky showed we get separated angular and radial equations. With Kinnersley
tetrad,

1 df. ,4
sin@ a0 \"" " ag

m?2 + s?2 + 2mscos @
—|_ K_ . 9
sin“ 0

d d
A5 — AS+1—
[ dr ( dr)

N H? — 2is(r — M)H
A

— a’w?sin’ 0 — 2aws cos 9)] sStmw(0) =0

+ diswr + 2amw — K|+ s(s + 1))] sRomw(r) =0

with H = (r? + a®)w — am
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Angular equation

24+ 5242 0
+ <K _mTs .+2 éns S 2w?sin? 0 — 2aws cos 9)] sStmw(0) =0
sin

Regular solutions are spin-weighted spheroidal harmonics.

For fixed s, m, @, angular functions with different £ are orthogonal:

/ df sin QSngw(H)SSg/mw(H) — (Sggf
0
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Radial equation

d d
A5 AS+1—
[ dr ( dr)

N H? — 2is(r — M)H
A

+ diswr + 2amw — K + s(s + 1))] sRomw(r) =0

As
eiw'r'*

T23+1 ?

- Outgoing boundary conditions Rin o ©

T — —00,

R"P ~

Ty — 00,

-+ Imposing both conditions, obtain discrete set of quasinormal modes with
frequency w € C.

Note: angular and radial equations both depend on @ nonlinearly. Only in
phase space, do we have
HY = —wY

20



Silinear form on modes

<<T€1m1w1 ) T€2m2w2>>

:87TM4/35m1m26_i(w2_w1)t lim {/ / drdb Sln93152R1R2°
T 0

ro—00 2
T1—=T4+ A

1A 2iMra , M
: (_K(W1 + wo) + A (m1 + mg) + 2 [—r—zacos@—l—X(TQ—cﬂ)])
i Asinf T Asinf
+| [ a6 \FAS;” Si1SRiRy|  + | [ db \FAS;” S1S5 Ry Ry }
0 =71 0 T=T2

- 2d orthogonality relation: integral does not factorize into 1d integrals, except
in special cases (@ — 0, near-NHEK, ...)

- Cancellations between boundary and volume divergences.
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Wronskian

WI[R1, Ry] = A'™5(r) |Ri(r)—— — Ra(r)——

- If R, R, solutions to radial equation for fixed s, m, £, @, then Wronskian is
independent of r.

- If R, R, are linearly dependent, then Z'[R,, R,] = O.

= /[R"™, ROUY = 0 at quasinormal frequencies ® = w,.

- What about dW[RL?, ROYY/dw? At w,, gives the norm of the quasinormal
mode.

22



Wronskian

WI[R1, Ry] = A'T5(r) [Rl (r)— — Ra(r)—

1. Let Y, Y, be GHP scalars in separated form, with the same m, £, @, but where
R, R, do not necessarily satisfy the radial equation. Then

87TM4/3W[R1,R2] — / t'Tf(\IJ;L/SjTl,TQ)
S2(t,r)

2. Let RL?, R;J)p be ingoing, upgoing solutions to the radial equation at frequency w.
Then at a quasinormal frequency w,,

d .
7 }?n-ﬁwp
de[ w w ]

—1

= graris

W=wn,

T, T
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Wronskian

Sketch of proof of 2: (based on Leung et al, 1994)

Since drn = 0 on solutions, d (t T (\If;‘/?’jTgln, Tgp)) = Lom (\If;l/?’jTifn, Tgp)

= —i(w — wp)m (\I!;L/BJTSIH, Tgp)
Integrate:

/ t-m(U TN T) = —i(w — wn) / (U, T, T) + +
oS S H JZ

Differentiate both sides wrt w, and set w — w,;:

d

¥ right side = —i/ W(\I/;L/BJTL? ,TP)
W " "’

S

W=wn,

24



Wronskian

Sketch of proof (cont’d):

d

dw

up
T,
W=Wn

: d
/ t-w(\If;l/ngf,Tgp)—l—/ t-m| —
w=wy, JOS_ 0S_ dw

left side = / t-m \If;l/ngg‘n, i
o 95, dw

N

d

dw

ZANSH Ttii)

W=Wp

. d -
Combining, 8rM*/3 —WIRS, R
W

W=wn

_ _ifw(xp;*/?’jrgln,mg)
S

Lol

_ &

oS _ dw

Asymptotic behaviors of RLE‘, RP — right side reduces to bilinear form in limit
S - 2.

d

up
W Lo
w=wn

vt ) - [ e (e
" 9S4 nod

W=Wwn,

[]
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—xcltation coefficients

Suppose we have compact support initial data (Y, @) | _,

Then quasinormal mode field response is given by
TQNM — Z CﬁmnTﬁmn

Imn

where

({Lemn, (T, @)))t=0

Ctmn —
‘ <<T€mn7 Tﬁmn>>t:O

1
N Y mns Yomn))i—o / ) \Ij4/3[(~7T£mn)w + YT @pmnlit=0

o sm@ A
—imae . 9 . 4 T mnT
dW/dw|w£m 27m/ / / Semn (0) Remn (1) {A(at Wy )

2Mra
A

[A (r? —a?) —r —ia cos «9] T + (0 + zmT)} drdfde

t=0

-+ This is precisely result obtained from standard Laplace transform analysis.
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Complex scaling

- Numerically, can be tricky to evaluate limit in bilinear form.

((T1, T2)) = Sll_ﬂnz {HS[\Pg/nglaTQ] -I-/

‘1’3/3(~7T1)T2}
oS

: +i
On modes, volume integrand and boundary terms ~ e @1+ a5 1, — + o0

— exponential divergence if $(w; + @,) < 0
(Cancellations still give finite result)

- Complexify 2 by deforming into complex-r: plane such that integrals converge:

¥V




Other bilinear forms: Hertz potentials

- Fundamental identity (Wald, 1978)

SE=0T
I \ \ T ap P W
Linearized
Einstein Teukolsky
- Adjoint identity
EST =T1O!

- If (ingoing radiation gauge) Hertz potential w = {—4,0} satisfies O"(y) = 0,
then

. MY is a real solution to linearized Einstein, and

: ‘P;“BP/”T?%S’TI// is a solution to O equation, but not the same as

28



Other bilinear forms: Hertz potentials

If we can find a Hertz potential that generates a given Weyl scalar, then by
differentiating, can reconstruct entire metric.

- Suppose Y {, Y, generated by (outgoing radiation gauge) Hertz potentials /;, ¥,

l.e., 3 43 -
Y, = U TIRS T, Y3, i=1,2

- Then by repeated application of Prabhu-Wald identity,
Wg'ly, S1T] = —TIs [T, Y]

: 1 - - ——
obtain  ((1y,7,)) = _ZH o, ¥, 4/3T'S’T\If2 4/BJT’S’T\I!2 340,

1 [~ _ _ . ~ 7 *
=~ | ¥, Yy V2 (‘1’2 Hop (‘1’2 4/%1))

= g (Gt (w2 (w3 200))))_

N bilinear form on Hertz potentials

29



Other bilinear forms: Hertz potential

Using a Teukolsky-Starobinsky identity, this second argument can be written

]D4 (@2—4/31)/4 (11]54/3121)) _ 5 (@2_4/36’4 (@;4/3151)) B 9£5L51ﬁl

algebraic on modes

- S0 we obtain a relation between bilinear form on Weyl scalars and on Hertz
potentials that generate them.

- Similarly, can obtain relation with bilinear form on metric perturbations.

- Aim iIs to use these relations to go to nonlinear order.
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—xample: Near-extreme Kerr quasinormal modes

Near-extreme Kerr has long lived modes. Potential nonlinear turbulent effects,
(Yang, Zimmerman, Lehner, 2015).

Far limit: Extreme Kerr

Near-NHEK |limit;:

. ry —T—
Extremality parameter o = . >
_|_

while holding fixed

t = to,

7 fj - — r—Tr4

9 "+

6=20,

- L

b=¢— o

S(w)

T

surface gravity

N YIE

Gives enhanced near-horizon symmetry
5[2 (R) X u(l)
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—xample: Near-extreme Kerr quasinormal modes

Modes obtained in matched asymptotic expansion

near-zone: r < 1
far-zone: © > ol

overlap region: cw < x < 1.

QM(LU — mQH)

o

where @ =

- To leading order, spin-weighted spheroidal harmonics evaluated at @ = m£2y;.

Far solution: @ = m&2; radial solution to extreme Kerr

Near solution: hypergeometric functions, which reduce to terminating polynomials upon
matching

v .
Matching gives “n = —§(h+ +n +1im), hy €¢ RT

1 1
he =—+4/—-+ K —2m?
+ 5 \/4+ m

wn:—%(h_+n+im), h_.=1/2+ireC 2



—xample: Near-extreme Kerr quasinormal modes

+ Check orthogonality
- Split bilinear form  ((Y1,Y2)) = (Y1, T2))near + ({1, T2))sar

- Near zone:

c/Vo )
(Y1, Y2)) noar = 2M ~2/3 [27; lim dx (@1 + Wy + QéAf) (2(1 + x)) > Ruear guear

e—0 .

Ry (0 Ry (0
+ €2(1 4 €)? ] /
\

€-dependent part precisely cancels
amounts to minimal subtraction

- Obtain orthogonality by explicit evaluation.
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Conclusions

- We established a bilinear form on Weyl scalars with respect to which Kerr
quasinormal modes with different frequencies are orthogonal.

Construction works in phase space. Relies on type D nature of Kerr and — ¢
reflection symmetry.

Extensions:

- Alternative regularization schemes: complex scaling, minimal subtraction
- Consistency with standard calculations for excitation coefficients

Relation of bilinear form on Weyl scalar to bilinear forms on metric
perturbations and Hertz potentials

Thank you
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