Adapting to noise distribution shifts in flow-based gravitational-wave inference


Deep learning techniques for gravitational-wave parameter estimation have emerged as a fast alternative to standard samplers – producing results of comparable accuracy. These approaches (e.g., DINGO) enable amortized inference by training a normalizing flow to represent the Bayesian posterior conditional on observed data. By conditioning also on the noise power spectral density (PSD) they can even account for changing detector characteristics. However, training such networks requires knowing in advance the distribution of PSDs expected to be observed, and therefore can only take place once all data to be analyzed have been gathered. Here, we develop a probabilistic model to forecast future PSDs, greatly increasing the temporal scope of DINGO networks. Using PSDs from the second LIGO-Virgo observing run (O2) – plus just a single PSD from the beginning of the third (O3) – we show that we can train a DINGO network to perform accurate inference throughout O3 (on 37 real events). We therefore expect this approach to be a key component to enable the use of deep learning techniques for low-latency analyses of gravitational waves.

Stephen R. Green
Stephen R. Green
Nottingham Research Fellow

I am a theoretical physicist studying gravitational waves, based at the University of Nottingham. My main interests are in black hole perturbation theory and applying probabilistic machine-learning methods to analyze LIGO data.