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We study the stability of anti–de Sitter (AdS) spacetime to spherically symmetric perturbations of a real
scalar field in general relativity. Further, we work within the context of the “two time framework” (TTF)
approximation, which describes the leading nonlinear effects for small amplitude perturbations, and is
therefore suitable for studying the weakly turbulent instability of AdS—including both collapsing and
noncollapsing solutions. We have previously identified a class of quasiperiodic (QP) solutions to the TTF
equations, and in this paper we analyze their stability. We show that there exist several families of QP
solutions that are stable to linear order, and we argue that these solutions represent islands of stability in
TTF. We extract the eigenmodes of small oscillations about QP solutions, and we use them to predict
approximate recurrence times for generic noncollapsing initial data in the full (non-TTF) system.
Alternatively, when sufficient energy is driven to high-frequency modes, as occurs for initial data far
from a QP solution, the TTF description breaks down as an approximation to the full system. Depending on
the higher order dynamics of the full system, this often signals an imminent collapse to a black hole.
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I. INTRODUCTION

Of the maximally symmetric solutions of the Einstein
equation, nonlinear stability in general relativity has been
proven for both Minkowski [1] and de Sitter [2] spacetimes.
In contrast, the question of stability of anti–de Sitter (AdS)
remains formally open. A key differentiator of AdS as
compared to its Λ ≥ 0 counterparts is that with nondissi-
pating boundary conditions at infinity, perturbations cannot
decay and energy is conserved [3]. Based on knowledge of
nonlinear wave propagation in the absence of dissipation,
AdS has been conjectured to be unstable [4,5] (see also
[6]). This expectation has been corroborated by numerical
simulations—supported by perturbative arguments—which
showed that certain initial configurations evolve to black
holes, no matter how small the initial deviation from AdS
was taken [7]. This paper showed, further, that the eventual
gravitational collapse resulted from a turbulent cascade of
energy to high-frequency modes of AdS, mediated by
resonant interactions.
Instability of AdS would have implications for a number

of fields, ranging from potential gravitational instabilities in
other low-dissipation or confining geometries, to thermal-
ization of conformal field theories (CFTs). In the context of
AdS/CFT (within the regime where general relativity holds
in the bulk), the formation and subsequent evaporation of a
black hole in AdS is believed to be dual to the process of

CFT thermalization. The more recent discovery of initial
configurations in the bulk that appear to avoid black hole
formation [8] was, therefore, somewhat surprising, as that
would indicate nonthermalizing CFT configurations. This
finding led to the identification of several “islands of
stability” in AdS [9–11].
Significant progress towards an analytic understanding

of the dynamics was achieved with the introduction of a
powerful perturbative framework—the two time framework
(TTF)—for analyzing small perturbations of AdS in terms
of coupled nonlinear oscillators [12] (see also [13]). This
framework efficiently captures the resonant energy-
exchange interactions between normal modes, while effec-
tively “integrating out” high-frequency oscillations. TTF
led to the discovery of a pair of quantities—the energy E
and particle number N—that are conserved at the leading
nonlinear level [14,15]. These quantities play key roles in
understanding long-term dynamical behaviors, including
dual (direct and inverse) turbulent cascades and nonequi-
partition of energy [15].
The main purpose of this paper is to establish a large new

class of islands of stability within the TTF approximation.
The central stable equilibria—quasiperiodic (QP) solutions
[12,15]—form discrete families, each family itself para-
metrized by N and E. In this paper we (i) construct the
families of equilibrium solutions, (ii) perform a linear
stability analysis within TTF showing stability, and (iii) use
the results to understand the long-term behavior of both
collapsing and noncollapsing initial configurations. In
particular, the stability analysis gives rise to a perturbation
spectrum that agrees with and explains “recurrences”—
long-term nearly periodic approaches of the configuration
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to the initial state, first observed in the Fermi-Pasta-Ulam
(FPU) system of coupled oscillators [16]—which were
observed numerically in the full system. Dependence of the
families of QP solutions on the two continuous parameters
N and E extends previously known one-parameter families
(time-periodic solutions [10]) and provides a clear con-
nection between conserved quantities and stable islands.

A. Background

Following [7], we restrict analysis to the spherically
symmetric case and four spacetime dimensions. As a proxy
for gravitational degrees of freedom, we take as our model a
real massless scalar field ϕ coupled to general relativity.
Ignoring gravity, the scalar field is characterized by normal
modes with spatial wave functions,

ejðxÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þðjþ 2Þ

π

r
cos3x2F1

�
−j; 3þ j;

3

2
; sin2x

�
;

ð1Þ

and frequencies ωj ¼ 2jþ 3 (j ¼ 0; 1; 2;…).
Since the frequency spectrum is commensurate, non-

linear gravitational interactions are resonant, and those
interactions cause energy to be readily transferred among
the modes.1 Numerical simulations have shown that for
certain initial data, energy is transferred from low-j to high-
j modes—a direct turbulent cascade [7]. This cascade
concentrates the energy—the high-jmodes are more highly
peaked in position space—and eventually leads to black
hole formation. The cascade behavior persists self-similarly
as the amplitude ϵ of the initial scalar field is decreased,
with the time to collapse scaling as 1=ϵ2 (see, e.g., Fig. 2
of [7]).
In contrast, other initial data seem to avoid collapse2 as

ϵ → 0. In addition to direct cascades, these solutions
feature inverse turbulent cascades, which transfer energy
to low-j modes [12,17]. Collapse is avoided if the inverse
cascades sufficiently hinder the flow of energy to high-
j modes.
A key observation is that energy cascades and normal

mode oscillations are governed by independent time scales.
As ϵ → 0, nonlinear interactions become weaker—the
stress-energy tensor Tϕ

ab ∝ ϵ2, and gravitational self-
interactions of ϕ scale as ϵ3—so the energy transfer time
scale is proportional to 1=ϵ2. Meanwhile, normal mode
oscillations proceed independently of ϵ. This separation of
time scales means we can use multiscale analysis methods

to study the slow mode-mode interactions independently of
the fast normal mode oscillations in the limit ϵ → 0 [12].
We define the “slow time” τ≡ t=ϵ2. Over short time

scales the scalar field is well approximated as a sum over
normal modes. Thus, we take as ansatz ϕ ¼ ϵϕð1Þ, with

ϕð1Þðt; τ; xÞ ¼
X∞
j¼0

ðAjðτÞe−iωjt þ ĀjðτÞeiωjtÞejðxÞ: ð2Þ

At lowest nonlinear order, we showed that gravitational
self-interactions of ϕ are taken into account provided the
coefficients AjðτÞ satisfy the coupled ordinary differential
equations [12],

−2iωj
dAj

dτ
¼
X
klm

SðjÞ
klmĀkAlAm; ð3Þ

known as the two time framework (TTF) equations. The
TTF equations were also derived using renormalization
group perturbation methods to resum secularly growing
terms that arise in ordinary perturbation theory [13]. Notice
that the TTF equations possess the same scaling symmetry,
AðτÞ → ϵAðτ=ϵ2Þ, seen in the full (non-TTF) system in the
limit ϵ → 0.
The numerical coefficients SðjÞ

klm appearing in (3) arise
from overlap integrals involving the ejðxÞ, and they vanish
unless jþ k ¼ lþm. This fact, together with the specific
form of the equations (3) (i.e., the lack of terms such as
ĀkĀlAm, etc.), arises because the only resonances that are
present in the system are those such that [13]

ωj þ ωk ¼ ωl þ ωm: ð4Þ

This property is related to a hidden symmetry in AdS [18].
For further discussion on the absence of certain resonance
channels, see [19].
Within their regime of validity, the TTF equations yield

approximate solutions much more economically than full
numerical relativity simulations [12]. Indeed, a significant
speedup is gained by not modeling the rapid normal-mode
oscillations. Moreover, the TTF approximation improves as
ϵ → 0—a limit that is especially hard to reach in numerical
relativity. Nevertheless, in the same way that finite differ-
ence methods employ a discrete spatial grid, the set of TTF
equations (3) must in practice be truncated at finite j ¼ jmax
(similar to pseudospectral methods). Previously, we com-
puted (by performing explicit integrations on a mode-

by-mode basis) the coefficients SðjÞ
klm up to jmax ¼ 47 [12].

We now have closed form expressions for the coefficients
(see Appendix A) that enable us to work to much larger
jmax. We typically set jmax ¼ 200 in this paper, which in
many cases provides an excellent approximation. In par-
ticular, the recurrence dynamics of noncollapsing solutions
are well captured.

1The frequency spectrum is also resonant with a massive
scalar, for other spacetime dimensions, and in the absence of
spherical symmetry.

2Simulations are of finite duration, and the limit ϵ → 0 cannot
be obtained numerically, so collapse avoidance is a conjecture.
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While useful as a calculational tool, the main power of
TTF is analytic.3 Indeed, in [14,15] it was uncovered that
the TTF equations conserve a total of three quantities: The
total energy and particle number,

E≡ 4
X
j

ω2
j jAjj2; ð5Þ

N ≡ 4
X
j

ωjjAjj2; ð6Þ

as well as the Hamiltonian,4

H ≡ −
1

4

X
jklm

SðjÞ
klmĀjĀkAlAm −

E
4

X
j

CjjAjj2; ð7Þ

where Cj are additional constants. Conservation laws of E
and N are associated with two Uð1Þ symmetries,

AjðτÞ → AjðτÞeiωjθ; ð8Þ

AjðτÞ → AjðτÞeiθ; ð9Þ

respectively, for θ ∈ R constant; conservation of H is
associated with time-translation symmetry [14]. [The
symmetries and associated conservation laws were
first uncovered for the TTF equations that describe a
nongravitating scalar field in AdS4, with quartic self-
interaction VðϕÞ ¼ λϕ4=4! [21].] Simultaneous conserva-
tion of E and N implies that direct and inverse turbulent
cascades must occur together, and that energy equipartition
is in general not possible [15].
Finally, we showed in [12] that the TTF equations give

rise to equilibrium solutions, which are QP. That is, each
mode amplitude,

AjðτÞ ¼ αje−iβjτ; ð10Þ

with βj ∈ R. Simulations in TTF and full numerical
relativity both provided evidence for stability of these
QP solutions. The case was then made in [15] that general
noncollapsing solutions can be treated as perturbations
about associated QP solutions—in other words, QP sol-
utions with the same E and N. As an example application,

we studied two-mode initial data, which exhibits FPU-like
[16] recurrences over long time scales. We showed, by
interpolating initial data between two-mode and associated
QP, that the recurrence times were only marginally affected.
We therefore concluded that a proper stability analysis
might predict these times, and QP solutions might provide
anchor points for the “islands of stability” in AdS.

B. Summary

In this paper we present a comprehensive analysis of QP
solutions and their relation to AdS (in)stability. After
presenting the algebraic equations governing QP solutions
in Sec. II, we show that they extremize H for first order
variations holding E andN fixed. We then numerically map
out the space of solutions to the QP equations. This space
can be divided into a number of families of solutions, each
one depending on two continuous parameters, E and N.
Because of the scaling symmetry of the TTF equations,
these families are scale invariant, so it is often useful to
exchange E and N for an overall scale, and the ratio
T ≡ E=N—which we identify with the “temperature.”
In Sec. III we perform a linear stability analysis of QP

solutions within TTF. We uncover two two-dimensional
subspaces of special perturbations: the first corresponds to
a pair of generators of the Uð1Þ symmetries (8) and (9) of
TTF; the second represents infinitesimal perturbations to
nearby QP solutions with different E and N. (We make use
of these special perturbations to generate the continuous
families of QP solutions parametrized by E and N in
Sec. II.) The remaining perturbations preserve E andN, and
may be decomposed into eigenmodes describing small
oscillations. The corresponding eigenvalues determine
stability. We present a numerical method to perform this
stability analysis given any particular background QP
solution.
After presenting the framework for analyzing stability,

we apply it to the families of QP solutions identified in
Sec. II. We argue, by explicitly checking a large number of
QP solutions, that the “physical” families—those that do
not depend strongly on the mode cutoff jmax in the limit
jmax → ∞—are all stable. By contrast, QP solutions that
are not members of these families can have unstable modes.
In Sec. IV we apply the results of the stability analysis to

understand long-term evolutions. Since E and N are
conserved, motion in phase space is constrained to con-
stant-ðE;NÞ hypersurfaces. Each surface intersects a given
stable QP family at most once, resulting in a discrete
collection of QP solutions. If initial data lie within the H-
trough around one of these QP solutions with the same
ðE;NÞ, then we associate the initial data to that QP solution.
Under evolution the solution is then confined to oscillate
about its associated QP solution. We illustrate, through
several examples, how nonlinear evolutions of initial data
within TTF inherit many of the properties uncovered by the
linear stability analysis. In particular, the linear stability

3See also [20] for another recent illustration of the power of
this approach within general relativity.

4As described in detail in [14], the system (3) in the “origin-
time” spacetime gauge of [7,12,13] is not a Hamiltonian system
itself. However, in the “boundary-time” gauge of [8,17] the
system is Hamiltonian with Hamiltonian H. Both gauges possess
the same conserved quantities, so in this paper we shall refer toH
as the “Hamiltonian,” despite working in origin-time gauge
(for comparison with prior numerical simulations). Note also
that the equivalent expression in [15] did not include the second
term in H.
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analysis explains nonlinear recurrences as oscillations
about QP solutions, and the eigenmodes (and combinations
thereof) predict the recurrence times. Thus, we obtain
approximate recurrence times without performing any time
integrations. This approach to understanding recurrences is a
generalization (to two conserved quantities) of theq-breather
approach to understanding FPU recurrences [22,23].
For evolutions that remain close to stable QP solutions,

the energy spectra remain close to the exponential energy
spectra of the QP solutions. In contrast, solutions that are
not close to QP solutions tend to approach power laws in
TTF, consistent with earlier studies [24]. A power law
spectrum contains far more energy at high-j, and when
translated to a description involving spacetime fields at
finite ϵ, the energy is far more concentrated at the origin of
AdS; in fact, it fails to even converge in j. When deviations
from AdS become large, TTF no longer applies, and
higher-order dynamics take over. It is often the case that
the higher order dynamics rapidly drive collapse once they
take hold [7]; the role of TTF is to indicate whether this
regime is reached.
It is important to keep track of the various levels of levels

of approximation used in this paper, so we summarize them
here. First, the TTF equations are taken as an approxima-
tion to the full system, valid in the limit5 ϵ → 0. Second, we
truncate the TTF system at a finite number jmax of modes.
Finally, we perform a linear stability analysis of QP
solutions within the truncated TTF system. Throughout
this paper we will address the validity of the various
approximations.

II. QUASIPERIODIC SOLUTIONS

There is already strong evidence that there are stable
equilibrium solutions—islands of stability—in AdS,
namely the time-periodic solutions [7,10]. These solutions
are nonlinear generalizations of individual normal modes,
with the effect of gravity being to shift the frequency. Such
solutions are moreover realized as solutions to the TTF
system (3) of the form

AjðτÞ ¼ δjkAkð0Þe
i

2ωk
SðkÞ
kkkjAkð0Þj2τ; ð11Þ

for some fixed mode number k. (The analysis of [10],
however, is accurate to higher order in ϵ.) For a given k
there exists a one-parameter family of solutions, para-
metrized by Akð0Þ, or equivalently, the energy E.
Inspired by the periodic solutions, we identified in [12] a

much larger class of quasiperiodic (QP) solutions.
Allowing for all modes to be excited periodically (but
with different periods), we sought solutions of the form

AjðτÞ ¼ αje−iβjτ;

with ðαj; βjÞ ∈ C × R. Such solutions would have constant
energy, Ej, in each mode—finely tuned so that energy
flows between modes are perfectly balanced.
Substituting the ansatz above into (3), we have

−2ωjβjαje−iβjτ ¼
X
klm

SðjÞ
klmᾱjαkαle

−ið−βkþβlþβmÞτ: ð12Þ

We see that the τ-dependence may be canceled from both
sides by imposing the condition

βj ¼ β0 þ ðβ1 − β0Þj; ð13Þ

reducing the system to

−2ωj½β0 þ jðβ1 − β0Þ�αj ¼
X
klm

SðjÞ
klmαkαlαm: ð14Þ

Without loss of generality, henceforth we take αj ∈ R in
the equation above (this represents a choice of initial time
τ ¼ 0). We thus have jmax þ 1 algebraic equations for
jmax þ 3 unknowns. That is, we have two free parameters—
one more than the time-periodic solutions—which we will
often take as E and N.

A. Extremization of H

Quasiperiodic solutions extremize the Hamiltonian H
with respect to perturbations that preserve E and N. To see
this, we first introduce some notation (following [14]). We
split the coefficients

SðjÞ
klm ¼ SS

jklm þRA
jkðδjlδkm þ δjmδklÞ; ð15Þ

where SS
jklm is symmetric under interchange of jk with lm

(as well as exchange of j with k or l with m). The quantity
RA

jk is antisymmetric and takes the form

RA
jk ¼ Cjω2

k − Ckω2
j : ð16Þ

We then define the quantity

V ≡X
jklm

SðjÞ
klmĀjĀkAlAm: ð17Þ

It may be shown that

∂V
∂Āj

¼ 2
X
klm

SS
jklmĀkAlAm: ð18Þ

Thus (3) may be rewritten

5For an interesting discussion of when solutions of the
approximated system might correspond to solutions of the full
system, see [25].
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−2iωj
dAj

dτ
¼ 1

2

∂V
∂Āj

þ 2
X
k

RA
jkjAkj2Aj; ð19Þ

or in terms of the Hamiltonian,

iωj
dAj

dτ
¼ ∂H

∂Āj
þ 2ω2

jAj

X
k

CkjAkj2: ð20Þ

Note that the presence of the last term indicates that the
system is not actually Hamiltonian in the origin-time
spacetime gauge in which we work (see footnote 4).
This term is not present in the boundary-time gauge [14].
Now consider a variation that fixes E and N,

δH ¼
X
j

�∂H
∂Āj

δĀj þ
∂H
∂Aj

δAj

�

¼ i
X
j

ωj

�
dAj

dτ
δĀj −

dĀj

dτ
δAj

�

−
1

2

X
jk

ω2
jðAjδĀj þ ĀjδAjÞCkjAkj2

¼ i
X
j

ωj

�
dAj

dτ
δĀj −

dĀj

dτ
δAj

�
−
δE
2

X
k

CkjAkj2:

ð21Þ

On the second line we used the TTF equation (20). On the
last line the final term vanishes for variations that preserve
E. For Aj also quasiperiodic, we can now use the ansatz
(10) and (13) to simplify the first term,

δH ¼
X
j

ωjβjðAjδĀj þ ĀjδAjÞ

¼
X
j

ωj½β0 þ jðβ1 − β0Þ�ðAjδĀj þ ĀjδAjÞ

¼ 1

8
ðβ1 − β0ÞδEþ 1

4

�
β0 −

3

2
ðβ1 − β0Þ

�
δN

¼ 0; ð22Þ

since we fix E and N. Thus, QP solutions are critical points
of H for perturbations that fix E and N.

B. Families of solutions

The QP equations (14) have two free parameters, which
must be fixed prior to solving. But, even after doing so,
there remain multiple solutions because the equations are
nonlinear. This gives rise to multiple families of QP
solutions, each extending over some range of E and N.
We solve the QP equations numerically, following

several approaches described in Appendix B. As always,
the TTF system is truncated at j ¼ jmax < ∞, and the
physical continuum limit corresponds to jmax → ∞. Thus,

any QP solution that depends strongly on jmax must be
discarded as unphysical.
The simplest way to obtain QP solutions (used in [12]) is

to use a Newton-Raphson method, which works well if a
good initial seed can be chosen. Since we know that single-
mode configurations (11) are solutions, we search for
solutions dominated by single modes j ¼ jr, but that have
nonzero energy in the other modes. The energy spectra
Ej ¼ 4ω2

j jAjj2 of several such solutions from the jr ¼ 0

family are illustrated in Fig. 1. Rather than parametrizing
the solutions by the continuous parameters E and N we
have labeled the spectra by the temperature T ¼ E=N. The
other parameter is simply an overall scale that does not
affect the shape of the curves.
Notice that for small T, the energy spectra approach

exponentials. (The minimum temperature for the jr ¼ 0

family occurs in the single-mode limit, with Tjr¼0
min ¼

E0=N0 ¼ ω0 ¼ 3.) For larger T the spectra deform and
it becomes increasingly difficult to obtain solutions using
the Newton-Raphson method. For such cases we can obtain
solutions by perturbing known solutions to different E and
N (see Appendix B). For the jr ¼ 0 family, solutions exist
up to T ¼ Tmax ¼ ωjmax

¼ 2jmax þ 3, which is the maxi-
mum possible temperature for the truncated collection of
modes. Such solutions are highly deformed from expo-
nentials—the maximal solution has all energy in mode
j ¼ jmax—and are not physical because of the dependence
on mode truncation. Requiring T ≪ Tmax will select for
physical configurations, and, with this restriction, the
physically relevant spectra are all nearly exponential.
Extrapolating to the continuum limit jmax → ∞—where
by definition there are no unphysical solutions—we expect
all jr ¼ 0 solutions to have nearly exponential spectra (for
any T).
In Fig. 2 we plot the spectra of QP solutions from

families with various jr > 0. Each solution is peaked at
j ¼ jr, and decays exponentially to both sides (with slight

FIG. 1 (color online). Energy spectra for several QP solutions
that were obtained numerically. These solutions are all members
of the jr ¼ 0 family. Here we take jmax ¼ 40.
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deformation for j < jr). As jr increases, so does the
minimum temperature Tjr

min ¼ ωjr of the respective QP
family. We find that the jr > 0 families do not extend in
temperature all the way to Tmax (in contrast to the jr ¼ 0
case), but that the range of temperatures increases with jmax
(see Fig. 3). In the jmax → ∞ limit it is not clear whether the
families have a finite or infinite extent.
It is possible to construct additional QP families. For

example, the resonance condition (4) implies that if only
even-numbered modes are excited initially, they will never
excite odd-numbered modes. In this case QP solutions can
be found that are similar to those of Fig. 1, but skipping
every other mode. Finally, there are solutions that have
considerable energy in high-j modes that do not appear to
connect to the families above (see Fig. 4). These latter
solutions are clearly dependent on mode truncation, so we
discard them as unphysical.

III. STABILITY OF QUASIPERIODIC SOLUTIONS

In [12], we numerically tested the stability of several QP
solutions in the jr ¼ 0 family within the full (non-TTF)
theory. For the duration of the simulations, perturbations
oscillated about the QP solutions over time scales long
compared to the AdS crossing time.
To address stability more systematically, in this section

we undertake a linear stability analysis of QP solutions
within TTF. In Sec. III A we linearize the equations (3)
about an arbitrary background QP solution. We show that
through an appropriate change of variables, the time
dependence (resulting from a time-dependent background
solution) can be eliminated, leaving an autonomous system
of the form

dx
dτ

¼ Ax:

The matrix A depends on the background QP solution, and
is independent of time τ. The problem of solving in time for
the perturbation vector x is, therefore, equivalent to that of
diagonalizing A.
In Sec. III B we identify special solutions [infinitesimal

Uð1Þ symmetry transformations and perturbations to other
QP solutions] unrelated to stability, and in Sec. III C we
outline the numerical procedure for finding the remaining
eigenvalues of A. Finally, in Sec. III D we apply this
approach to study the stability of the families of QP
solutions identified in Sec. II B. We sample a large number
of solutions within the physical families, and find that they
are all Lyapunov stable—initially small perturbations
remain small, but they do not decay to zero (see Sec. 23
of [26]). In Sec. III E we comment on nonlinear stability for
finite-sized perturbations.
Throughout this paper, we work in the origin-time

spacetime gauge (see footnote 4). We note that the stability
analysis would go through nearly identically in the boun-
dary-time gauge, where the system is truly Hamiltonian.

FIG. 2 (color online). Energy spectra of QP solutions from
several discrete families (with different jr). The temperature in
each case is very close to ωjr , as the QP solutions shown here are
very close to single-mode solutions (jmax ¼ 100).

FIG. 3 (color online). The domain of existence of QP families
for jr ∈ f0; 1; 2; 3; 4; 5g and jmax ∈ f10; 30; 50g. For jr ¼ 0, the
family is defined in the full domain ½3; 2jmax þ 3�. Note that the
bounds of the vertical axis increases with jmax.

FIG. 4 (color online). QP solution not smoothly connected to
single-mode solution (jmax ¼ 100).
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The change of gauge only contributes a time-dependent
phase shift to the TTF coefficients AjðτÞ, and our stability
results hold in both gauges.

A. Linearized equations

Consider a perturbed QP solution,

AjðτÞ ¼ AQP
j ðτÞ þ ξjðτÞ; ð23Þ

where AQP
j ðτÞ ¼ αje−iβjτ, with fαj; βjg ∈ R. Substituting

into (3) and keeping terms to first order in ξj, we have

dξj
dτ

¼ i
2ωj

X
klm

SðjÞ
klm½ξ̄kαlαme−iτðβlþβmÞ

þ ᾱkξlαme−iτðβm−βkÞ þ ᾱkαlξme−iτðβl−βkÞ�: ð24Þ

Since the background QP solution has quasiperiodic time
dependence, so do the coefficients of this equation. If the
coefficients were in fact periodic one could have applied
the Floquet theory to obtain the general solution to (24) in
terms of eigenmodes, and thereby determine stability (see
Sec. 28 of [26]). (In fact, by tweaking the values of β0 and
β1 so that they are rational multiples of each other,
periodicity can be achieved, although the period might
be quite long.) The Floquet approach requires numerical
integrations over one period to identify the eigenmodes,
which is somewhat tedious, but works generically for
periodic systems.
For our TTF system, however, the analysis simplifies due

to the resonance condition. First, factor out the background
time dependence in each perturbative mode to define new
variables,

ξjðτÞ ¼ χjðτÞe−iβjτ: ð25Þ

This gives rise to the autonomous equations

dχj
dτ

¼ iβjχj þ
i

2ωj

X
klm

SðjÞ
klmðχ̄kαlαm þ ᾱkχlαm þ ᾱkαlχmÞ:

ð26Þ

These equations contain complex conjugations of χj and
are therefore not linear over C. To obtain a linear system,
split χj into its real and imaginary parts,

χjðτÞ ¼ ujðτÞ þ ivjðτÞ: ð27Þ

The system is now reduced to

duj
dτ

¼ −βjvj −
1

2ωj

X
klm

SðjÞ
klmð−αlαmvk þ αmαkvl þ αlαkvmÞ;

ð28Þ

dvj
dτ

¼ βjuj þ
1

2ωj

X
klm

SðjÞ
klmðαlαmuk þ αmαkul þ αlαkumÞ:

ð29Þ

It can be shown that the equations (28) and (29) conserve
the linearized energy, particle number, and Hamiltonian,

δE ¼ 8
X
j

ω2
jαjuj; ð30Þ

δN ¼ 8
X
j

ωjαjuj; ð31Þ

δH ¼ 1

8

�
β1 − β0 − 4

X
j

Cjα2j

�
δEþ 1

8
ð5β0 − 3β1ÞδN:

ð32Þ

B. Special solutions

1. Uð1Þ symmetry transformations

Recall that the TTF equations are invariant under two
Uð1Þ symmetries (8) and (9),

AjðτÞ → AjðτÞeiωjθ;

AjðτÞ → AjðτÞeiθ;

for θ ∈ R constant. Off of QP solutions, infinitesimal Uð1Þ
transformations take the form

�
uj
vj

�
→

�
0

ωjαjθ

�
; ð33Þ

�
uj
vj

�
→

�
0

αjθ

�
; ð34Þ

respectively.
It is straightforward to check that these perturbations

satisfy (28) and (29). Indeed, (29) holds trivially, while (28)
holds because of the resonance condition (4) [in the case of
(33)] and the QP equation (14).

2. Perturbations to nearby QP solutions

Consider now a perturbation from a QP solution to
another QP solution,

αje−iβjτ → ðαj þ δαjÞe−iðβjþδβjÞτ: ð35Þ

The new QP solution is required to satisfy the QP
equation (14) as well. To first order in the perturbation,
this requirement takes the form
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− 2ωjðαjδβj þ βjδαjÞ
¼
X
klm

SðjÞ
klmðαlαmδαk þ αkαmδαl þ αkαlδαmÞ; ð36Þ

and the condition (13) implies either of

δβj → ωjθ; ð37Þ

δβj → θ; ð38Þ

for θ ∈ R.
The infinitesimal version of the perturbation (35) is

�
uj
vj

�
→

�
δαj

−αjτδβj

�
: ð39Þ

Using this mapping it is easily checked that (36) is
identical to (29), and that (28) holds for both cases (37)
and (38).
Perturbations (37) and (38) represent a two-parameter

family of solutions to the linearized equations. This
family can be reparametrized in terms of δE and δN,
allowing for the families of QP solutions in Sec. II B to be
fully obtained as orbits of these perturbations (see
Appendix B).
Together, infinitesimal Uð1Þ transformations and

infinitesimal perturbations to nearby QP solutions form
two two-dimensional generalized eigenspaces (with eigen-
value 0) of the matrix A representing the linear system
(see below). Indeed, the action of A on a perturbation of the
form (37) gives a Uð1Þ transformation (33), and a sub-

sequent action of A gives 0. [Similarly, ð38Þ!A ð34Þ!A 0.]
A two-dimensional generalized eigenspace does give rise
to linear growth in the solution [see (39)], but this growth is
not relevant to the question of stability since it is simply
an infinitesimal perturbation to another equilibrium
solution (35).

C. General solution technique

It is convenient to express (28) and (29) in matrix form.
Defining

x ¼
� ðujÞ
ðvjÞ

�
; ð40Þ

the perturbative equations take the form

dx
dτ

¼ Ax; ð41Þ

where A is a ð2jmax þ 2Þ × ð2jmax þ 2Þ constant real
matrix. We now complexify the equation and put A in
Jordan form, taking real solutions in the end.

In general, the background QP solution, and hence the
matrix A, are known only numerically. This is problem-
atic since the Jordan decomposition is numerically ill
conditioned—if A has multiple eigenvalues, small errors
in A can lead to large errors in its Jordan form. In
particular, we know from the previous subsection that A
has two generalized eigenspaces of dimension 2, which
can be misidentified as distinct one-dimensional
eigenspaces.
In contrast to the Jordan decomposition, the Schur

decomposition is well conditioned numerically and con-
tinuous in the matrix elements. We therefore perform a
Schur decomposition of A,

S ¼ U−1AU: ð42Þ

Here U is unitary, and the matrix S is upper triangular
with eigenvalues along its diagonal. The known gener-
alized eigenspaces of A have eigenvalue 0. Numerically,
however, these may deviate slightly from zero. We also
find that, generically, all other eigenvalues are well
separated from 0. So, to correct the errors in the
generalized eigenspaces, we round off all infinitesimal
diagonal components of S to 0, and denote this new
matrix ~S.
Finally, we take the Jordan decomposition of ~S,

J ¼ P−1 ~SP: ð43Þ

The matrix J always contains the expected pair of 2 × 2
Jordan blocks. Aside from these, we found that the
Jordan form J was always diagonal. We denote the
additional ð2jmax − 2Þ eigenvalues by λn, and the asso-
ciated eigenvectors of A (the column vectors of UP)
by ên.
To obtain the time evolution of a linearized pertur-

bation of a QP background (of the same E and N) one
must project initial data onto the eigenvectors fêng.
Each of these eigenvectors then evolves independently
as eλnτên. If the initial data is real then a real solution is
guaranteed.
There are relationships between the eigenvalues of A.

Since A is real, if λ is an eigenvalue, then so must be λ̄.

Also, since A is of the form
�
0 −C
D 0

�
[see (28) and (29)],

A2 ¼
�−CD 0

0 −CD
�
, and each eigenvalue of A2 occurs

twice. Since these eigenvalues are the squares of eigen-
values of A, and the eigenvalues of A (excepting 0) are
generically nondegenerate, if λ is an eigenvalue of A, then
so must be −λ. In sum, ðλ;−λ; λ̄;−λ̄Þ must all be
eigenvalues.
These properties of the eigenvalues are also character-

istic of symplectic flows and a Hamiltonian structure.
While our system is not Hamiltonian (in the origin-time
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gauge used here [14]), the pattern of eigenvalues is
nevertheless preserved. In particular, for any decaying
mode there exists a corresponding growing mode, so the
best one can hope to achieve in terms of stability is
Lyapunov stability. In this case, all modes have harmonic
time dependence with no growth or decay—i.e., purely
imaginary λ.

D. Results

We applied the above analysis to a sampling of the QP
solutions described in Sec. II B. In almost all cases we
found that all of the eigenvalues λn were purely imaginary,
implying stability. The only unstable QP solutions were
those previously deemed “unphysical,” as in Fig. 4, and in
these cases only a small number of eigenvalues had nonzero
real part. Therefore, we expect that all of the physical QP
solutions are stable. For these stable solutions, we denote
the conjugate eigenvalues by using negative indi-
ces, λ−n ¼ −λn.
We studied the dependence of the eigenvalues on jmax.

As jmax is increased by 1, a pair of higher frequency
(conjugate) eigenmodes is introduced, while (the norms of
the) existing eigenvalues are shifted slightly lower. In the
continuum limit jmax → ∞, the eigenvalues appear to
approach asymptotic values (see Fig. 5). In that sense,
the behavior of the low-frequency modes is robust to mode
truncation.
Of particular interest is whether the frequency spectrum

is itself resonant, as this may imply chaotic dynamics at the
nonlinear level. In fact, at high frequencies the separation
between subsequent eigenmodes λn approaches a constant
value as

iλn ¼ C1 þ C2nþO

�
1

n

�
; ð44Þ

where C1 and C2 are constants depending on the particular
QP solution.6 Thus, the high-frequency part of the spectrum
approaches a commensurate spectrum only asymptotically
in n. (We will see later that C2 is closely related to the
recurrence time for noncollapsing solutions.)
For perturbations of QP solutions, it is also instructive to

examine the overlap between the original normal modes of
AdS (j-modes) and the QP eigenmodes (n-modes). The
generic solution to (41) is

xðτÞ ¼
X
n

cneλnτên; ð46Þ

where the cn are constants. For each j, Fig. 6 plots the
components ðênÞj as a function of eigenfrequency iλn. This
shows that for initial perturbations consisting of low-j
modes, low frequency n-modes are excited. Conversely,
low-n eigenmodes excite low-j normal modes most
strongly. This observation explains why low-j modes are
typically seen to oscillate with the lowest frequencies (see,
e.g., Figs. 10 and 12).

E. Nonlinear stability

The linearized analysis above provides useful informa-
tion and intuition for finite-sized deviations from QP
solutions as well. Since E and N are conserved quantities,

FIG. 5 (color online). Dependence of eigenfrequencies on
truncation jmax. We plot the ten lowest eigenfrequencies for
the QP solution with T ¼ 3.75 and E ¼ 8. After decreasing
noticeably up to jmax ≈ 25, eigenfrequencies approach asymp-
totic values.

FIG. 6 (color online). For the QP solution with T ¼ 3.75 and
E ¼ 8, we plot the magnitude of the components ðênÞj of the
linearized eigenvectors, as a function of eigenfrequency iλn. We
see that low-frequency eigenvectors trigger low-j modes
(jmax ¼ 50).

6For single-mode solutions (11) with jr ¼ k, the eigenvalues
may be computed analytically,

iλn ¼
�

2

ωk
SðkÞ
kkk −

1

ωn
SðnÞ
knk

�
½Akð0Þ�2; ð45Þ

provided Akð0Þ ∈ R (consistent with previous results showing
stability [10]). From this spectrum, the expansion (44) may be
checked explicitly, and the constants C1 and C2 computed.
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motion in phase space is constrained to constant-ðE;NÞ
hypersurfaces. Each of these surfaces, in turn, intersects the
families of stable QP solutions at most once each. Thus,
given the temperature T of the initial data, there is a finite
number of potentially relevant QP solutions, and these can
be determined from Fig. 3.
Within a given ðE;NÞ-surface, we know that the QP

solutions extremize the Hamiltonian H, which is also
conserved in time. In Appendix C we show that, in fact,
the stable QP solutions minimize H. Since H is conserved
in time, the size of the surrounding valley in H determines
the size of the island of stability of the QP solution. One
could in principle check to see whether given initial data lie
within one of the valleys, in which case they would remain
near the QP solution indefinitely (within TTF). As we will
see in the following section, nonlinear solutions often
depend closely on the properties (such as the spectrum
fλng) of linearized perturbations about QP solutions.
It is instructive to visualize the minima ofH. In Fig. 7 we

plot the value of H over a two-dimensional slice of a
constant-ðE;NÞ surface. The slice was chosen to pass
through three minima, corresponding to stable QP solu-
tions. Note, however, that the full problem has a large
number of dimensions, with ð2jmaxÞ-real-dimensional con-
stant-ðE;NÞ hypersurfaces. Moreover, the continuum limit
takes jmax → ∞. While a valley within a finite-dimensional
space must have a finite size, it is possible that this size
asymptotes to zero as jmax → ∞.

IV. APPLICATION TO ADS (IN)STABILITY

We now return to our main questions: for a self-
gravitating scalar field in AdS, how can we predict which

initial data will collapse in the limit of ϵ → 0? How do
recurrences arise? How does collapse in the full Einstein-
scalar system connect to behavior in TTF?
The TTF equations provide a good approximation if

the amplitude of the AdS perturbation is small so that
normal-mode oscillation time scales and mode-mode
energy transfer time scales decouple. The approximation,
therefore, always breaks down prior to black hole for-
mation. Knowledge of this fact alone, however, indicates
that a great deal of energy has transferred to high-j modes,
and in many cases, subsequent evolution will lead to
collapse.7

For small, but finite, perturbations, a simple criterion for
checking whether TTF has broken down is to evaluate
spacetime quantities ðϕ; gabÞ from fAjðτÞg and check for
black holes (i.e., check whether the metric quantity A of [7]
vanishes at any point, or whether the energy in the scalar
field satisfies the “hoop-conjecture” [29]). Likewise, one
could check whether ð∂tϕÞ2 becomes large. We will refer to
the blowup of spacetime fields as “collapse” in the
following, recognizing also that higher-order dynamics
will play a role.
To study stability, one is interested in the ϵ → 0 limit. In

this case, for collapse to occur, spacetime quantities must
continue to be large in this limit. Recalling that spacetime
quantities are generally given as mode sums multiplied by
powers of ϵ, it would be necessary for these mode sums to
diverge to see an indication of collapse. (We are supposing
that jmax → ∞ for this discussion.) For example, ϕ ¼ ϵϕð1Þ,
with ϕð1Þ given by (2), so the only way for ϕ to become
large in the ϵ → 0 limit is for the sum (2) to diverge. In this
scenario it is possible to have perfectly well-defined TTF
evolution, but with spacetime quantities ill defined for any
value of ϵ.
For exponential spectra, Aj ∼ e−μj, sums such as (2)

always converge. But for power laws, Aj ∼ ð1þ jÞ−α, this
is not the case. Indeed, at the origin, where the mode
functions peak,

ejð0Þ ¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 3jþ 2

p
ffiffiffi
π

p ¼ OðjÞ: ð47Þ

So, for example,

ϕðt; 0Þ ¼ ϵ
X∞
j¼0

ðAjðτÞe−iωjt þ ĀjðτÞeiωjtÞejð0Þ

∼ ϵ
X
j

ð1þ jÞ−α ×OðjÞ; ð48Þ

FIG. 7 (color online). Hamiltonian plotted as a function of two
parameters, μ1 and μ2, that interpolate [within a constant-ðE;NÞ
surface] between three QP solutions with T ¼ 7.1. The three QP
solutions (blue dots) are members of the jr ¼ 0; 1; 2 families.
The normalization H0 is the value of H for the jr ¼ 0 QP
solution. Note that the ridges result from choosing a nonsmooth
interpolation.

7In general relativity, collapse usually occurs once TTF
breaks down [7], while in Gauss-Bonnet gravity it can be
averted [27] because of a radius gap for black hole formation.
This holds despite both theories having identical TTF equa-
tions [28].
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thus for α < 1, ϕ is UV divergent. (We have here assumed
that the phases do not cause a cancellation.) Other
quantities, such as the metric variable A, are even more
divergent. We therefore propose that the large-j asymptotic
behavior determines whether black hole collapse can occur
in the ϵ → 0 limit. (See also [30] for further discussion on
this point.)
Connecting to our study of QP solutions, the picture that

emerges with regard to collapse is as follows. QP solutions
that have asymptotically exponential tails will not collapse
because they are equilibria and have well-behaved asso-
ciated spacetime quantities. Initial data sufficiently close to
a stable QP solution (with the same E and N) will also not
collapse because the solution will simply oscillate around
that QP solution, and its high-j tail will be close to the QP
tail. Initial data that oscillate about a stable QP solution, but
whose oscillations are quite large can collapse if the
oscillation passes through a power law that causes the
TTF description to break down. Finally, initial data that do
not oscillate about QP solutions can attain a wider range of
configurations, and, as we will confirm, tend to approach
power laws and collapse (in AdS4).
In the following, we will examine several example

solutions within TTF, both noncollapsing and collapsing.
For the noncollapsing examples, our approach is to identify
the closest stable QP solution, and relate the observed
dynamics to the linearized analysis. We find that the
linearized eigenfrequencies fλng (and combinations
thereof) do a remarkable job of approximating the recur-
rence times, even for large perturbations. It should be kept
in mind that, while the physically relevant limit takes
jmax → ∞, all simulations are by necessity performed at
finite jmax < ∞; we will discuss the continuum limit below.

A. Nearly-QP initial data

We first study the nonlinear dynamics of initial data that
closely approximate a stable QP solution. We show that the
simulation closely matches the linearized analysis, and we
identify the origin of deviations from linear behavior.
In anticipation of the following subsection, we define

(a particular case of) two-mode initial data,

Etwo-mode
j ¼ E

2
ðδj0 þ δj1Þ; ð49Þ

with the energy evenly divided between the two lowest
modes. This data has temperature T ¼ 3.75, and for later
comparison with spacetime simulations we take
E ¼ 0.0162. There is therefore only one associated QP
solution, with jr ¼ 0 (see Fig. 3). (We neglect QP solutions
that skip over modes.) Following [15], we consider initial
data that interpolate between the two-mode initial data and
the associated QP solution,

Ej ¼ ð1 − λÞEQP
j þ λEtwo-mode

j ; ð50Þ

where EQP
j is the associated QP spectrum. For all λ, this

interpolation preserves E and N.
We performed nonlinear evolutions of the TTF equa-

tions (3) for initial data (50) as the parameter λ was varied
between 0.05 and 0.30. Figure 8 shows the oscillations of
the lowest mode. As λ is increased, the mode continues to
oscillate about the QP solution, although with larger
amplitude, as expected. We plot the evolution of the energy
of mode j ¼ 5 as λ is varied in Fig. 9(a). This shows that as
the amplitude fluctuations increase considerably, the perio-
dicity is not significantly changed. The discrete Fourier
transform in Fig. 9(b) shows that the oscillations are
described by a discrete set of frequencies, as expected
from the linearized analysis.
Figure 10 shows the peaks of the spectral energy density

of ℜðχjÞ for j ≤ 20. For the most part, these peaks align
closely with linear eigenfrequencies of the QP solution, but
there are several extraneous peaks at low frequencies.
These arise mostly in modes j ¼ 0; 1 and for larger λ,
which indicates they arise nonlinearly. This is confirmed in
Fig. 11, which shows that the new peaks grow nonlinearly
with λ. In fact, the frequency of the first new peak is
precisely the difference between the two lowest eigenfre-
quencies iλ0 ¼ 0.0207 and iλ1 ¼ 0.0396, so it is a non-
linear effect driven by a coupling between the two lowest
eigenmodes. More generally, given the form (44) of the
spectrum,

iλn ¼ C1 þ C2nþO

�
1

n

�
;

these lowest-frequency quadratically driven oscillations
will arise at frequencies that are approximately

FIG. 8 (color online). Evolution of mode j ¼ 0 in complex
plane for interpolated initial data. The full solution here is

AjðτÞ ¼ ½αj þ χjðτÞ�e−iðβjþ ~βλjÞτ. Note that here (and subsequently)
we also fit for a λ-dependent frequency shift satisfying
~βλj ¼ ~βλ0 þ jð ~βλ1 − ~βλ0Þ, which arises from nonlinear effects (it is
quadratic in λ). Had we not done so, there would be an additional
overall phase oscillation. This phase, however, has no influence
on the evolution of the energy spectrum, and tends to 0 as λ → 0.
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C2 ¼ 0.0158. At higher nonlinear order, additional low
frequencies will appear, at, e.g., C2 − C1 ¼ 0.0048.
Notice also from Fig. 10 that larger-j modes are

influenced more strongly by the larger-n QP eigenmodes,
as expected from Fig. 6. Moreover, as the deviation from
the QP solution increases (larger λ) higher frequency QP
eigenmodes are excited.
This analysis shows that for nearly-QP initial data, the

linearized analysis of the associated QP equilibrium sol-
ution does an excellent job of predicting the nonlinear
dynamics, in particular the periodicities. Furthermore, as λ
is increased further, an additional low-frequency (≈C2)
mode is nonlinearly excited by the linear oscillations. This
mode, we will see, is most closely related to recurrences.

B. Two-mode equal-energy initial data

Setting λ ¼ 1 in the interpolated initial data of the
previous subsection, we obtain the two-mode equal-energy
initial data, which have received significant attention
[12,15]. As above, T ¼ 3.75, so there is a single associated
QP solution (that of the previous subsection).
Figure 12 shows the nonlinear evolution of the energy of

the first six modes. The main recurrence time is closely
related to the periods of the QP eigenmodes, but is in
fact slightly longer. Indeed, the dominant time scale of the

FIG. 10 (color online). Main oscillation frequencies present in
the evolution of nearly-QP initial data (for various λ). Horizontal
blue dotted lines represent the linear eigenfrequencies fjλnjg of
the QP solution. For each mode j, the three most dominant peaks
of the spectral energy density are indicated by circles (largest
peak) and crosses (secondary peaks). We also dropped secondary
peaks if they were smaller than 1% of the main peak. These plots
were computed using a discrete Fourier transform on a regular
grid of size 104.FIG. 9 (color online). Energy content of mode j ¼ 5 as a

function of time (top), and its spectral density (bottom).

FIG. 11 (color online). Spectral energy density of ℜðχ1Þ,
rescaled by λ2. As λ is varied, the heights of the two largest
peaks are unchanged to leading order. Meanwhile, the rapid
growth of the smallest peak (inset) with λ indicates a nonlinear
origin. Note also that λ1 − λ0 ¼ 0.01881, which closely matches
the position of the smallest peak. Thus, we conclude that the
smallest peak arises from a quadratic coupling between modes
n ¼ 0; 1. Note that we also observed even smaller peaks at
frequencies λ1 þ λ0 and λ2 − λ1. These plots were computed
using a discrete Fourier transform on a regular time grid with step
size 0.25, up to time 150,000.
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j ¼ 1 mode is approximately 450, and the first three
linearized eigenmodes about the QP solution have periods
303, 159 and 110. In precisely the manner described in the
previous subsection for smaller λ, nonlinear couplings
between the eigenmodes drive oscillations at the new
(slightly longer, as compared to the largest eigenperiod,
303) characteristic time scale 2π=C2 ≈ 398 (for
jmax ¼ 100). Notice also that at the third recurrence
(τ ≈ 1350) there is an even closer return to the initial
configuration, and that this coincides with a third order
nonlinear interaction time scale, 2π=ðC2 − C1Þ ≈ 1310.
To compare with numerical simulations in AdS, we

reconstruct the spacetime fields from the TTF variables
fAjðτÞg (with ϵ ¼ 1 by convention to keep time axes
consistent). We plot the upper envelope of Π2 ≡ ð∂tϕÞ2 at
the origin, x ¼ 0, in Fig. 13. (Π2 itself exhibits a fast-time
oscillation that is not of interest.) This quantity is related to
the Ricci scalar, and is frequently employed as an indicator
of collapse (e.g. [7,8,27]). Notice that Π2ðx ¼ 0Þ can reach
very large values in the course of evolution, but inherits the
recurrences from the energy plot. Growth in Π2ðx ¼ 0Þ
reflects direct turbulent cascades of energy to high-j
modes, while decay reflects inverse cascades. The time
scale of these recurrences—troughs at t ¼ 450; 850, peaks
at t ¼ 300; 700; 1100—is consistent with the predicted
period of 2π=C2 ≈ 398.

It is now clear that previously unexplained recurrence
times can be understood naturally as oscillations about
QP equilibria, and they can be predicted without any
time integrations. (In the case of the two-mode data, the
frequency8 of recurrences emerges nonlinearly as the
asymptotic separation C2 between eigenfrequencies.)
Such predictions are of particular relevance for their
holographic implications for field theories.

C. Gaussian initial data, σ ¼ 4=10

Initial data with a Gaussian distribution for the scalar
field in position space have been closely scrutinized within
the context of the AdS stability problem (see, e.g.,
[7,17,27]). In particular, collapse was first studied for a
Gaussian with variance σ ¼ 1=16. As noted in [8], there is
also a range of σ for which collapse is apparently averted in
the limit ϵ → 0. Armed with our new understanding of
perturbations about QP solutions, we here analyze a non-
collapsing Gaussian, and in the following subsection we
study the collapsing case.
The σ ¼ 0.4 Gaussian, which has T ¼ 3.42, is in many

ways similar to the two-mode initial data. There is a single
associated QP solution, and the evolution is characterized
by a series of direct and inverse cascades. Throughout
the evolution, the energy spectrum (see Fig. 14) remains
roughly exponential—as opposed to power law—
corresponding to noncollapse.
Observed oscillation periods can be predicted by

analyzing the associated QP solution in the same way as

FIG. 12 (color online). Energy evolution of first six modes for
two-mode equal-energy data with T ¼ 3.75. The evolution was
computed using the TTF equations with jmax ¼ 100.

FIG. 13 (color online). Upper envelope of Π2ðx ¼ 0Þ for
two-mode initial data. Approach to full numerical relativity
simulation is seen as jmax is increased. The higher peaks arise
because increasing jmax allows the direct cascade to proceed to
higher-j modes, which are more peaked about x ¼ 0. This
figure updates a similar figure in our previous work [12], with
a higher resolution general relativity simulation, and also larger
jmax TTF simulations.

8In contrast to the frequency, Fig. 13 shows that the amplitude
of recurrences depends strongly upon jmax for the range we
studied. Since the oscillation is nonlinear, there is no obvious way
to predict this amplitude.
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for the two-mode data. As a representative example,
we monitor the behavior of a high-frequency (j ¼ 58)
mode in Fig. 15. The high-frequency oscillation of ℜðχ58Þ
occurs with period 359, which to this accuracy matches
exactly the period of one of the λn. Similar agreement
with the linearized frequencies can be seen for the
other modes.
The Gaussian data, however, differs from the two-mode

initial data in that, initially, it more strongly excites
high-j modes. In turn, this causes increased excitation of
high-n QP eigenmodes. This is reflected in complicated
linear “beating” and nonlinear “driving” dynamics between
excited modes seen in Fig. 15. Here, the slow envelope
modulation arises as the difference in frequencies between
subsequent QP eigenmodes—with a corresponding
period 2π=C2 for this QP solution. The amplitude of the
beating is predicted by the linear analysis to be∼10% of the
measured amplitude and we expect that nonlinear driving
accounts for the remainder. Again, the characteristic time
scale is 2π=C2, which can be determined from the linear
spectrum to be 12500 for jmax ¼ 100, in agreement with
Fig. 15. This time scale also matches the recurrences
in Fig. 14.

D. Gaussian initial data, σ ¼ 1=16

In contrast to all previous examples9, the σ ¼ 1=16
Gaussian is seen to collapse in numerical simulations
[7,8]. The temperature T ¼ 13.1 suggests that there could
in principle be several associated QP equilibria, but
nevertheless the data do not display any oscillations,
indicating that they are far from these equilibria.
Consistent with previous full general relativity simula-

tions [24], the energy spectrum of this data in TTF
approaches a power law10 Ej ∼ ðjþ 1Þ−α as it evolves in
time (see Fig. 16). Extrapolating to jmax → ∞, such a
spectrum would lead to diverging spacetime fields (such as

FIG. 14 (color online). Evolution of the energy spectrum for
σ ¼ 0.4 Gaussian initial data. We show several times during the
first direct and inverse cascades (top), and a much later time
during the second inverse cascade (bottom). Spectra are all
roughly exponential (jmax ¼ 200).

FIG. 15 (color online). The evolution of ℜðχ58Þ, and the upper
envelope of Π2ðx ¼ 0Þ, for σ ¼ 0.4 Gaussian initial data. The
high-frequency oscillation ofℜðχ58Þ is very well predicted by the
linear analysis of the associated QP solution. The lower-
frequency modulation is a combination of beating of linear
modes and nonlinear driving, and it corresponds to the recur-
rences seen in Π2ðx ¼ 0Þ (jmax ¼ 200).

9For the finite values of ϵ studied, the two-mode cases appear
to collapse around the third peak in Fig. 13 [31–33], but whether
smaller ϵ cases also collapse remains unknown.

10Speculation [30] that power laws do not arise in gravity (in
an analogy to a self-interacting scalar field) is based on scaling
assumptions for the S-coefficients. In fact, the S-coefficients
grow with increasing mode number in gravity (see footnote 11),
while they decay for the scalar [30], so the coupling to high
modes is much stronger in gravity. This arises because of the
spacetime derivatives present in the gravitational interaction.
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Π2 at the origin), indicating the break down of TTF as a
valid description. At this point, higher order dynamics have
been seen to lead to collapse [7,8]. Despite the failure of
TTF to provide a valid description past the power law, the
TTF solution (for finite jmax) is perfectly well defined for
longer times (beyond those shown in Fig. 16).
A recent publication [34] examined the TTF evolution of

two-mode data in AdS5, which displays a similar evolution
to a power-law spectrum as seen here. It was argued that in
the limit jmax → ∞, TTF itself breaks down after the power
law is reached, with the time derivatives of phases of the
mode amplitudes ∝ logðτ − τ�Þ. The truncated equations
nevertheless have a well-defined solution beyond τ�, which
was described as an unphysical “afterlife.” The authors of
[34] emphasized that even at finite jmax a highly oscillatory
behavior led to numerical difficulties beyond τ�. We note
that we did not encounter any numerical difficulties in our
simulations of σ ¼ 1=16 Gaussian data beyond this time11

(see Appendix D).
We present in Fig. 17 the evolution of the first derivative

of the phase of mode 80 for different values of jmax. While
the curves agree at early times, we were not able to
conclude whether they approach a limit near the collapse
time τ� ≈ 1500 as jmax → ∞. Nevertheless, we do not

observe the logarithmic blowup in the derivatives of the
phases reported in Fig. 5 of [34] for the case of AdS5; in the
present case of AdS4 the behavior seems less extreme.

V. CONCLUSIONS

In this paper, we have analyzed perturbations of AdS4
within the TTF formalism. We identified a collection of
two-parameter families of QP equilibrium solutions to the
TTF equations, and we established their linear stability (in
the sense of Lyapunov). For each QP solution, this analysis
gave rise to a new spectrum of eigenmodes fêng—which
are collective oscillations of the AdS4 normal modes fejg
about the QP solution—along with their own oscillation
frequencies fλng. We also showed, through several exam-
ples, that the linear analysis often remains valid well into
the nonlinear regime, and moreover, the leading nonlinear
effect is generally to introduce new frequencies that are
combinations of the fλng.
A key takeaway message is that for initial data that do

not collapse as ϵ → 0 in AdS4 (or, at least, do not do so
immediately), recurrences are simply oscillations about
stable QP equilibria. The relevant frequencies arise from
the fλng. With our stability analysis, we now have a method
of predicting recurrence times without any need for time
integrations.
Initial data that do collapse as ϵ → 0 (in the sense that the

TTF description breaks down) are not sufficiently close to
any QP solution. We observed, in agreement with previous
fully nonlinear general relativistic simulations [24], that
these data tend to approach power-law energy spectra. The
presence of stable QP equilibria thus reconciles the
apparent tension between the fully commensurate fre-
quency spectrum of AdS and nonthermalizing initial data.
Indeed, fully commensurate frequency spectra would be
expected to thermalize as a result of the Kolmogorov–
Arnol'd–Moser theory and Arnol'd diffusion [35], yet the
QP solution [in conjunction with conservation of

FIG. 16 (color online). Energy spectra at various times for σ ¼
1=16 Gaussian initial data. This figure shows the approach to
power-law during the time evolution of the TTF equations. We
used jmax ¼ 400. Compare to the exponential spectra for the σ ¼
0.4 Gaussian, illustrated in Fig. 14.

FIG. 17 (color online). Absolute value of the derivative of the
phase of mode 80, for an initial Gaussian σ ¼ 1

16
data, and

different values of jmax. We denote Aj ¼ RjeiBjðτÞ.

11The closed-form expressions of Appendix A give rise to
analytic expressions for the asymptotic scaling of the S-coef-
ficients. Precisely, in AdS4, S

ðjÞ
iji ∼ − 128

π j2i2 ln j. For comparison,
Ref. [34] reports the corresponding expression in AdS5 to be j2i3.
Because of the ln j factor, the arguments of [34] do not apply
in AdS4; the phases (in their notation) ðBnÞ ∼ n ln n can
have Bl þ Bn − Bj − Bk → ∞ even for resonant quartets, so
the ansatz taken for high modes is invalidated (e.g.,
B2i þ B0 − 2Bi ∼ i ln 2). Since it would be natural for a loga-
rithmic factor to arise in AdS5 as well, it would be useful to
analytically compute in this case the asymptotic form of the S-
coefficients.
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ðE;N;HÞ] constrains the available phase space and acts as
an island of stability. The spectra of perturbations about QP
solutions are nonresonant themselves (except asymptoti-
cally for large n), indicating that thermalization should not
be expected within a stable island.
We point out two facts that play a role in extending this

work to systems beyond AdS4. In AdS, each QP family is
parametrized by the two conserved quantities E and N. In
contrast, for other confining systems, such as a flat
spherical cavity [36], additional resonances are present,
and N is not conserved. As a result, in that case we expect
only one-parameter families of stable equilibria.
Meanwhile, as the dimensionality of the system is
increased, couplings to high-j modes become stronger
(S-coefficients become larger), which then drive stronger
turbulent cascades. These effects compete in deciding
collapse versus noncollapse.

ACKNOWLEDGMENTS

We would like to thank O. Evnin for discussions and
comments on the manuscript, and A. Buchel for discus-
sions and comments throughout this project. This work was
supported by the NSF under Grant No. PHY-1308621
(LIU), by NASA under Grant No. NNX13AH01G, by
NSERC through a Discovery Grant (to L. L.) and by
CIFAR (to L. L.). Research at Perimeter Institute is sup-
ported through Industry Canada and by the Province of
Ontario through the Ministry of Research and Innovation.
A. M. thanks the Perimeter Institute for Theoretical Physics
for hospitality and accommodations, as part of the Graduate

Fellows Program, during an internship sponsored by the
École Normale Supérieure.

Note added.—After submitting our paper, the relevant
papers [37–39] were posted. In particular, [37] reported
that in AdS5, the possible logarithmic factor contemplated
in footnote 10 is not present, and [38] found a logarithmic
modulation on top of the exponential energy spectra we
identified for QP solutions.

APPENDIX A: CLOSED FORM
FOR THE S-COEFFICIENTS

Reference [14] provided new simplified formulas for the
S-coefficients described by integrals of products of the
mode functions (1). Notice that our conventions for the S-
coefficients differ from those in [14] by a factor 4, that is to
get our coefficients Sijkl one has to multiply the expres-
sions given in [14] by 4. Note also that in this section, for

commodity, we rewrite Sijkl ≡ SðiÞ
jkl.

Here we shall give new closed-form formulas found for
the tensors of [14], which allowed us to compute the S-
coefficients up to jmax ¼ 400 in a short time.
Recall the expressions for Sijkl given in [14]:

Sllll ¼ 2ω2
l Xllll þ 6Yllll þ 8ω4

l Wllll þ 8ω2
l W

�
llll

− 4ω2
l ðAll þ ω2

l VllÞ; ðA1Þ

and, for i ≠ l,

Slili ¼ Sliil ¼ 2

�
ω2
i þ ω2

l

ω2
l − ω2

i

�
ðω2

l Xilli − ω2
i XliilÞ þ 8

�
ω2
l Yilil − ω2

i Ylili

ω2
l − ω2

i

�
þ 4

�
ω2
iω

2
l

ω2
l − ω2

i

�
ðXilli − XliliÞ

þ 2ðYiill þ YlliiÞ þ 4ω2
iω

2
l ðWllii þWiillÞ þ ω2

i W
�
llii þ ω2

l W
�
iill − ω2

l ðAii þ ω2
i ViiÞ: ðA2Þ

and finally, if i ≠ l and i ≠ k,

Sijkl ¼ −
�

1

ωi þ ωj
þ 1

ωi − ωk
þ 1

ωj − ωk

�
ðωiωjωkXlijk − ωlYiljkÞ

−
�

1

ωi þ ωj
þ 1

ωi − ωk
−

1

ωj − ωk

�
ðωjωkωlXijkl − ωiYjiklÞ

−
�

1

ωi þ ωj
−

1

ωi − ωk
þ 1

ωj − ωk

�
ðωiωkωlXjikl − ωjYijklÞ

−
�

1

ωi þ ωj
−

1

ωi − ωk
−

1

ωj − ωk

�
ðωiωjωlXkijl − ωkYikjlÞ: ðA3Þ

The quantities that appear in these coefficients are defined by integrals of the mode functions (recall that we work here in
d ¼ 3 spatial dimensions):

Xijkl ¼
Z π

2

0

e0iðxÞejðxÞekðxÞelðxÞ
sin3x
cos x

dx; ðA4Þ
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Yijkl ¼
Z π

2

0

e0iðxÞejðxÞe0kðxÞe0lðxÞ
sin3 x
cos x

dx; ðA5Þ

Wiill ¼
Z π

2

0

dxeiðxÞ2 sin x cos x
Z

x

0

dyekðyÞ2 sin y cos y; ðA6Þ

W�
iill ¼

Z π
2

0

dxe0iðxÞ2 sin x cos x
Z

x

0

dyekðyÞ2 sin y cos y; ðA7Þ

Vij ¼
Z π

2

0

dxeiðxÞejðxÞ sin x cos x; ðA8Þ

Aij ¼
Z π

2

0

dxe0iðxÞe0jðxÞ sin x cos x: ðA9Þ

To simplify these expressions, we used the form of the
mode functions ejðxÞ. We know that (1)

ejðxÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þðjþ 2Þ

π

r
cos3x2F1

�
−j; 3þ j;

3

2
; sin2x

�
:

Since the first argument of the hypergeometric function is a
negative integer, the hypergeometric function appearing in
ej is in fact a polynomial function of degree j. Using then
the expansion for the hypergeometric function,

2F1

�
−j; 3þ j;

3

2
; x

�
¼
Xj
k¼0

�
j

k

�
ð−1Þk ð3þ jÞk

ð3
2
Þk

xk;

ðA10Þ

with ðaÞk the rising Pochhammer symbol, the following
identity holds as proven below:

ejðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðjþ 1Þðjþ 2Þp fjþ1ðxÞ
sinðxÞ ; ðA11Þ

with

fmðxÞ ¼ ðmþ 1Þ sinð2mxÞ þm sin½2ðmþ 1Þx�: ðA12Þ

To establish this result, first notice that in d ¼ 3, the mode
functions satisfy the differential equation,

e00i ðxÞ þ 2½tanðxÞ þ cotðxÞ�e0iðxÞ þ ð2iþ 3Þ2eiðxÞ ¼ 0:

ðA13Þ

Next, using (A11) and (1), it is immediate to check that at
x ¼ 0 the two expressions and their derivatives have the
same limits,

lim
x→0

eiðxÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiþ 1Þðiþ 2Þ

π

r
;

lim
x→0

e0iðxÞ ¼ 0;

lim
x→0

e00i ðxÞ ¼ −
4ω2

i

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiþ 1Þðiþ 2Þ

π

r
: ðA14Þ

It is then straightforward to check that both (A11) and
(A10) satisfy the differential equation (A13) on ð0; π

2
Þ. At

this point, while one might be tempted to conclude both
expressions are the same, we note that (A13) is singular
at x ¼ 0 and x ¼ π

2
. We thus proceed as follows: let us

first denote ejðxÞ≡ cosðxÞujðsin2 xÞ. Next, with the
expanded form of both (A10) and (A11) [using

sinð2mxÞ ¼Pm−1
k¼0 ð

2m
2kþ 1

Þð−1Þk sinðxÞ2kþ1 cosðxÞ2m−2k−1]

we can show that ujðtÞ is in both cases a polynomial
function of t; the remaining task is to show both
polynomials are the same. To check this fact, denote
by fQðtÞ; TðtÞg the polynomial equal to uðtÞ from
expressions (A10) and (A11), respectively. We can then
substitute each (multiplied by cos x) into Eq. (A13). The
resulting equation for both Q and T in (0,1) is the same
simple differential equation,

4tð1 − tÞ2f00ðtÞ þ 2ðt − 1Þð4t − 3Þf0ðtÞ
þ ðω2

i ð1 − tÞ − 3þ tÞfðtÞ ¼ 0; ðA15Þ

with f standing for either Q or T. Now, since Q and T
are polynomials, they verify this equation everywhere.
Moreover, this equation gives rise to the following
order-2 relation on the coefficients of Q and T, denoting
QðXÞ ¼PkqkX

k and TðXÞ ¼PktkX
k, which is

2ðkþ 1Þð2kþ 3Þukþ1 þ ðω2
j − 3 − 8k2 − 6kÞuk

þ ð4kðk − 1Þ þ 1 − ω2
jÞuk−1 ¼ 0: ðA16Þ
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Consequently, according to (A16), ðqkÞk and ðtkÞk are
both uniquely determined by the same relation, and by their
first two values. It is thus sufficient to check that q0 ¼ t0
and q1 ¼ t1, which is given by (A14) [since eð0Þ ¼ uð0Þ
and e00ð0Þ ¼ −uð0Þ þ 2u0ð0Þ]. We have thus proven that
Q ¼ T, which is that (A11) is a valid expression for ej.
Let us also stress that these calculations, done in AdS4,

are not straightforwardly extended to other dimensions.
Some inspection and analysis of the calculations in differ-
ent dimensions, however, points towards a similar simpli-
fication of eigenmodes in odd spatial dimensions d, though
we have not exhaustively studied this question.
We then have, for the derivative,

e0jðxÞ ¼
3þ 2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðjþ 1Þðjþ 2Þp cosðxÞ
sin2ðxÞ gjþ1ðxÞ; ðA17Þ

with

gmðxÞ ¼ −ðmþ 1Þ sinð2mxÞ þm sin½2ðmþ 1Þx�: ðA18Þ

Since the indefinite integrals appearing in W and
W� are easy to compute, one can now reduce the
problem to computing many integrals of the typeR π

2

0 dxx
γ cosα x sinβ x × Fð2mxÞ and

R π
2

0 dxx
γ cosα x sinβ x×

Fðð2mþ 1ÞxÞ, with F the cosine or the sine, m an
integer, γ ∈ f0; 1g, and α and β integers greater or equal
to −1.
We give here some conventions and the few delicate

integrals that one has to compute in order to get the relevant
coefficients. We will denote δm the Kronecker delta
function, and SignðmÞ the function taking the value 1 on
N�, the value −1 on Z�

−, and Signð0Þ ¼ 0. Some of these
integrals were found thanks to several formulas found
in [40].
We also denote ψ the polygamma function ψðxÞ ¼ Γ0ðxÞ

ΓðxÞ
where Γ is the Euler function. We denote p≡mþ n
and k≡m − n:

∀ n ∈ Z;
Z π

2

0

dx
sin ðð2nþ 1ÞxÞ

sinðxÞ ¼ π

2
ðSignðnÞ þ δðnÞÞ;

∀ m ∈ N;
Z π

2

0

dxx
cos ðð2mþ 1ÞxÞ

sinðxÞ ¼ π

4
ð−1Þm

�
ψ

�
mþ 2

2

�
− ψ

�
1þm
2

��
;

∀ ðm; nÞ ∈ N2;
Z π

2

0

dx
cosðxÞ
sinðxÞ sin ð2mxÞ sinð2nxÞ ¼

8>>><
>>>:

1
2

�
ψ

�
1þp
2

�
− ψ

�
1þk
2

��
if p is even

− 1
2

�
−ψ
�

p
2

�
þ ψ

�
k
2

�
þ 1

k −
1
p

�
if p is odd:

We are then able to find closed form expressions for every quantity we need. Nevertheless, these expressions appear to be
too long for the X and Y tensor to be written clearly on one page, and are therefore not given here. We shall now give the
expressions found for A, V, W and W�.
Due to the symmetric property of A and V it is sufficient to restrict to i ≥ j. For the case where iþ j is an even integer,

Aij ¼
ð2iþ 3Þð2jþ 3Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiþ 1Þðiþ 2Þðjþ 1Þðjþ 2Þp �

ð2iðiþ 3Þ þ 2jðjþ 3Þ þ 7Þ
�
ψ

�
iþ jþ 3

2

�
− ψ

�
i − jþ 1

2

��

−
2ðiþ 1Þðjþ 1Þð−2ði − 4Þj2 − 2iðiþ 8Þjþ ið2iðiþ 4Þ − 3Þ þ 2j3 − 3j − 13Þ

ðði − jÞ2 − 1Þðiþ jþ 3Þ
�
; ðA19Þ

Vij ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiþ 1Þðiþ 2Þðjþ 1Þðjþ 2Þp �

ð2iþ 3Þð2jþ 3Þ
�
ψ

�
iþ jþ 1

2

�
− ψ

�
i − jþ 1

2

��

−
ð2iþ 3Þ2
iþ jþ 3

þ iðiþ 2Þ
i − j − 1

þ ðiþ 1Þðiþ 3Þ
−iþ j − 1

þ 6 − 8iðiþ 1Þ
iþ jþ 1

þ 4ð3iþ 4Þ
�
: ðA20Þ

For the case where iþ j is an odd integer, and i ≥ j,
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Aij ¼
ð2iþ 3Þð2jþ 3Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiþ 1Þðiþ 2Þðjþ 1Þðjþ 2Þp �

ð2iðiþ 3Þ þ 2jðjþ 3Þ þ 7Þ
�
ψ

�
iþ jþ 2

2

�
− ψ

�
i − j
2

��

− 4ij −
4iðiþ 3Þ þ 7

i − j
þ 7iðiþ 2Þ þ 6

iþ jþ 2
þ ðiþ 1Þðiþ 3Þ

iþ jþ 4
− 8i

�
; ðA21Þ

Vij ¼
1

4πði − jÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiþ 1Þðiþ 2Þðjþ 1Þðjþ 2Þp ðiþ jÞðiþ jþ 2Þðiþ jþ 4Þ ð−8ð5iþ 7Þj4 − 4ðið14iþ 85Þ þ 93Þj3

þ 8ðiðði − 21Þi − 93Þ − 89Þj2 þ 4ðiðiðið6iþ 37Þ þ 19Þ − 102Þ − 108Þj

− 2ð2iþ 3Þð2jþ 3Þði − jÞðiþ jÞðiþ jþ 2Þðiþ jþ 4Þ
�
ψ

�
i − j
2

�
− ψ

�
iþ j
2

��
þ 16iðiþ 1Þð2iðiþ 5Þ þ 9ÞÞ:

ðA22Þ

Last, we have the following general values for W and W�:

Wmmnn ¼
ð−2m2ð2lþ 3Þ þ 4mðl2 − 2Þ þ 2lð3lþ 5Þ þ 3Þ

16πðmþ 1Þðmþ 2Þðlþ 1Þðlþ 2Þð2lþ 3Þ δm−l −
ð2mþ 3Þ2ð2lðlþ 3Þ þ 5Þ

16πðmþ 1Þðmþ 2Þðlþ 1Þðlþ 2Þð2lþ 3ÞSignðm− lÞ

þ ð2mþ 3Þ2
4πðmþ 1Þðmþ 2Þ

�
−ψðmþ 1Þ þ ψ

�
mþ 3

2

�
þ 2 lnð2Þ

�

−
1

16πðmþ 1Þ2ðmþ 2Þ2ðlþ 1Þðlþ 2Þð2lþ 3Þ ½8m
4ðlþ 1Þð2lðlþ 4Þ þ 7Þ þ 8m3ðlþ 1Þðlð14lþ 55Þ þ 48Þ

þm2ð4lðlð73lþ 355Þ þ 527Þ þ 979Þ þmð4lð17lð5lþ 24Þ þ 602Þ þ 1113Þ þ 2ðlðlð74lþ 351Þ þ 515Þ þ 237Þ�;
ðA23Þ

W�
mmnn ¼−

ð2mþ 3Þ2
16πðmþ 1Þðmþ 2Þðnþ 1Þðnþ 2Þð2nþ 3Þ ½4m

4ð2nþ 3Þ− 8m3ððn− 3Þn− 7Þ− 2m2ð2nð6nðnþ 6Þþ 41Þ− 3Þ

þ 4mðnðnð6nðnþ 3Þ− 13Þ− 54Þ− 18Þþ 3ð2nðnð6n2þ 28nþ 41Þþ 21Þþ 9Þ�δm−n

−
ðmþ 2Þð2mþ 3Þ2ðnþ 1Þð−mþnþ 1Þ2

4πðmþ 1Þðnþ 2Þð2nþ 3Þ δm−n−1þ
ðmþ 1Þð2mþ 3Þ2ðnþ 2Þðm−nþ 1Þ2

πðmþ 2Þðnþ 1Þð8nþ 12Þ δm−nþ1

−
ð2mþ 3Þ2ð4m2ð2nðnþ 3Þþ 5Þþ 12mð2nðnþ 3Þþ 5Þ− 2nðnþ 3Þð8nðnþ 3Þþ 27Þ− 37Þ

16πðmþ 1Þðmþ 2Þðnþ 1Þðnþ 2Þð2nþ 3Þ Signðm−nÞ

−
ð2mþ 3Þ

16πðmþ 1Þ2ðmþ 2Þ2ðnþ 1Þðnþ 2Þð2nþ 3Þ ½16m
5ðnþ 1Þð2nðnþ 4Þþ 7Þþ 8m4ðnþ 1Þð2nð17nþ 67Þþ 117Þ

þm3ð8nðnðnð93−4nÞþ 517Þþ 797Þþ 3018Þþm2ð4nðnðnð187− 36nÞþ 1458Þþ 2408Þþ 4701Þ
þmð4nðnðnð31− 52nÞþ 936Þþ 1736Þþ 3545Þþ 2ðnðnð423− 2nð24nþ 31ÞÞþ 947Þþ 513Þ�: ðA24Þ

APPENDIX B: METHODS FOR OBTAINING
QUASIPERIODIC SOLUTIONS

Here we describe the two approaches we took to generate
the families of QP solutions in Sec. II B.

1. Direct solution using Newton-Raphson method

Given an appropriate starting point, the Newton-
Raphson method provides successively better approximate

solutions to a set of coupled equations. Thus, to find
numerical QP solutions of (14) it is necessary to choose an
appropriate “seed” for the algorithm.

Although we parametrized QP solutions by E and N in
the main text, it is more appropriate here to choose
parameters from among β0, β1 and fαjg. For example,
to find jr ¼ 0 solutions we fix α0 ¼ 1 (an arbitrary choice
because of the scaling symmetry) and α1 ≪ α0.
Equation (14) may be solved to eliminate β0 and β1,
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leaving jmax − 1 equations and jmax − 1 unknowns. For the
remaining variables, we choose an exponential energy
spectrum as a seed,

αj ∼
3e−μj

2jþ 3
; ðB1Þ

with μ ¼ log ½3=ð5α1Þ�. For sufficiently small α1 the
Newton-Raphson method gives back a solution with nearly
exponential energy spectrum, as seen in Fig. 1.
As α1 is increased, the QP energy spectra deform away

from exponentials and it becomes increasingly difficult to
find solutions with the exponential ansatz (B1). In fact, in
[12] we could not find solutions with α1 > 0.42. Slightly
better results can be obtained by taking ðβ1 − β0Þ=β0 as a
parameter (β1 ≫ β0 approaches the single-mode solution),
however, this also breaks down for large T. To fully
uncover the jr ¼ 0 family we require the technique of
the following subsection.
Solutions within jr > 0 families can be obtained in a

similar manner, now fixing αjr ¼ 1 and αjrþ1 ≪ αjr .
To pick a seed for the Newton-Raphson algorithm, we
solve the first several QP equations (14) perturbatively
in αjrþ1=αjr .

2. Perturbation from known solution

Now suppose AQP
j ðτÞ ¼ αje−iβjτ is a known numerical

QP solution. Section III B 2 shows that there is in general
a two-parameter family of perturbations to nearby QP
solutions, so by following such perturbations new QP
solutions—otherwise not readily obtainable through the
Newton-Raphson method—can be constructed.
Since one of the parameters is, as usual, an overall scale,

there is only one nontrivial parameter. It is, therefore,
convenient to fix N and vary E by a small amount δE.
Following Sec. III B 2, we numerically solve the linear
system of equations,

0 ¼ 2ωj½αjðθ1 þ ωjθ2Þ þ βjuj�
þ
X
klm

SðjÞ
klmðαlαmuk þ αkαmul þ αkαlumÞ; ðB2Þ

0 ¼ 8
X
j

ωjαjuj; ðB3Þ

δE ¼ 8
X
j

ω2
jαjuj; ðB4Þ

for the variables ðθ1; θ2; fujgÞ. We then update the QP
solution,

αj → αj þ uj; ðB5Þ

βj → βj þ θ1 þ ωjθ2: ðB6Þ

The new QP solution has particle number N, energy
Eþ δE, and therefore the temperature has changed
by δT ¼ δE=N.
With the updated QP solution, the procedure may be

iterated repeatedly to obtain finite-sized ΔT. (The Newton-
Raphson method can be used periodically to ensure the
deviation from actual QP solutions does not become
too large.) In this manner, we obtained the full QP families
illustrated in Fig. 3. These families terminate when sol-
utions to (B2)–(B4) no longer exist (i.e., when the
associated matrix has vanishing determinant).

APPENDIX C: MINIMIZATION OF H AND
LINEAR STABILITY OF QP SOLUTIONS

We shall here show the relation between the minimiza-
tion ofH for a QP solution and its linear stability. We know
from (22) that H has a critical point at a QP solution. Here
we compute the second order change in H.
Let us take a generic second order perturbation of a QP

solution, which does not perturb E and N,

αj → αj þ Að1Þ
j þ Að2Þ

j ; ðC1Þ

where AðkÞ
j is the order k perturbation of αj. Recall the

expression (7) of H,

H ≡ −
1

4

X
jklm

SðjÞ
klmĀjĀkAlAm −

E
4

X
j

CjjAjj2:

Inserting (C1) into this equation, one finds

−δ2H¼E
4

X
j

Cj½αjðAð2Þ
j þ Āð2Þ

j ÞþjAð1Þ
j j2�

þ1

4

X
j;k;l;m

SðjÞ
klm½αjαkαlAð2Þ

m þαjαkαmA
ð2Þ
l þαjαlαmĀ

ð2Þ
k

þαkαlαmĀ
ð2Þ
j þαlαmĀ

ð1Þ
j Āð1Þ

k þαjαkA
ð1Þ
l Að1Þ

m

þαkαmĀ
ð1Þ
j Að1Þ

l þαkαlĀ
ð1Þ
j Að1Þ

m þαjαmĀ
ð1Þ
k Að1Þ

l

þαjαlĀ
ð1Þ
k Að1Þ

m �:

Let us concentrate on the part where only Að2Þ
j appears.

Using the QP TTF equation (14), as well as the relations
(15) and (16) on the S coefficients, one can reduce the
expression of this part to

X
k

Ckα2k
X
j

ω2
jαjðĀð2Þ

j þ Að2Þ
j Þ −

X
j

ωjαjβjðĀð2Þ
j þ Að2Þ

j Þ:

ðC2Þ

Now, since E and N are conserved at both linear and
quadratic level, we have, for the quadratic level,
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X
j

ω2
j ½αjðAð2Þ

j þ Āð2Þ
j Þ þ jAð1Þ

j j2� ¼ 0;

X
j

ωj½αjðAð2Þ
j þ Āð2Þ

j Þ þ jAð1Þ
j j2� ¼ 0;

which can be rewritten as

∀ðujÞ ∈ RN s:t: uj ¼ u0 þ jðu1 − u0Þ;X
j

ωjuj½αjðAð2Þ
j þ Āð2Þ

j Þ þ jAð1Þ
j j2� ¼ 0:

Using this identity in (C2), one can rewrite the full second order variation of the Hamiltonian as a function of the linear
perturbation only,

−δ2H ¼ E
4

X
j

CjjAð1Þ
j j2 þ

X
j

ωjβjjAð1Þ
j j2 −

X
k

Ckα2k
X
j

ω2
jαjjAð1Þ

j j2

þ 1

4

X
jklm

SðjÞ
klm½αlαmĀð1Þ

j Āð1Þ
k þ αjαkA

ð1Þ
l Að1Þ

m þ αkαmĀ
ð1Þ
j Að1Þ

l þ αkαlĀ
ð1Þ
j Að1Þ

m þ αjαmĀ
ð1Þ
k Að1Þ

l þ αjαlĀ
ð1Þ
k Að1Þ

m �:

Now, with (15), one can reduce this last expression to

−δ2H ¼ E
4

X
j

CjjAð1Þ
j j2 þ

X
j

ωjβjjAð1Þ
j j2 −

X
k

Ckα2k
X
j

ω2
jαjjAð1Þ

j j2 þ
X
jklm

SS
jklmαkαlĀ

ð1Þ
j Að1Þ

m

þ 1

4

X
jklm

SS
jklmαlαmðĀð1Þ

j Āð1Þ
k þ Að1Þ

j Að1Þ
k Þ:

Let us now rewrite the linear perturbation Að1Þ
j in terms of

real and imaginary part,

δAj ¼ Rj þ iIj:

If we denote by X the column vector
ðR0;…; Rjmax

; I0;…; Ijmax
Þ, and M the matrix such that

we have −δ2H ¼ XTMX, then M is of the simple form� A0 0

0 B0
�
, where A0 and B0 are both square matrices of

size jmax þ 1, and we have the following expressions for
their coefficients:

A0
i;j ¼

1

2

X
lm

SS
ijlmαlαm þ ωjβjδi;j þ

E
4
Cjδi;j

− ω2
jδi;j

X
k

Ckα2k þ
X
kl

SS
ikljαkαl; ðC3Þ

B0
i;j ¼ −

1

2

X
lm

SS
ijlmαlαm þ ωjβjδi;j þ

E
4
Cjδi;j

− ω2
jδi;j

X
k

Ckα2k þ
X
kl

SS
ikljαkαl: ðC4Þ

Note that these matrix elements are quite similar to the
matrix elements of the matrix A whose elements can be
deduced from (28) and (29).

Indeed, writing A in the form
�

0 −C
D 0

�
, one can, with

the same type of calculations, prove the following simple
identities:

A0
i;j ¼ ωiDi;j − 2αiαjðω2

jCi − ω2
i CjÞ; ðC5Þ

B0
i;j ¼ ωiCi;j: ðC6Þ

In (C5), since we are interested in the sign of XTA0X to
characterize stability, the right antisymmetric part will
play no role and we can ignore it. Let us also recall that
we are interested in the sign of XTMX, with X satisfying
the linear conservation of E and N, that is, if
X ¼ ðR0;…; Rjmax

; I0;…; Ijmax
Þ,

∀ ðujÞ ∈ RN s:t. uj ¼ u0 þ jðu1 − u0Þ;X
j

αjωjujRj ¼ 0;

which is equivalent to saying that ðRjÞ is orthogonal to the
vectors x1 ≡ ðαjωjÞ and x2 ≡ ðαjω2

jÞ in the Euclidean
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Rjmaxþ1 space. We will thus place ourselves in the
two spaces E≡ ðx1; x2Þ⊥ for A0 and D, and F≡Rjmaxþ1

for B0 and C.
We note that in order to get the announced result, one has

to assume that C and D are both diagonalizable. We have
seen numerically this is the case, but we have not rigorously
proven this.
Let us now assume thatH has a local minimum at the QP

solution ðαjÞ. Then that means that A0 and B0 are negative,

∀ X ∈ E;XTA0X ≤ 0; ðC7Þ

∀ Y ∈ F; YTB0Y ≤ 0: ðC8Þ

Denoting T ≡
 ω0 0 0

0 � � � 0

0 0 ωjmax

!
, we have A0 ¼ TD.

Taking any eigenvector X of D with eigenvalue λ (since
D is diagonalizable), we have XTA0X ¼ λ

P
iωiX2

i ≤ 0,
which means that SpðDÞ ⊂ R−. Using the exact same trick
one can show that

TD is a negative symmetric matrix ⇔ SpðDÞ ⊂ R−:

ðC9Þ
But, by computing the expression for the D coefficients,

it is immediate thatDT−1 is also symmetric. Now, since we
know that A0 ¼ TD is a negative matrix, we deduce that
DT−1 is also negative. Since TC is also negative, and since
the nonzero eigenvalues of the product of two negative
matrices are positive, the real eigenvalues of DC are all
positive. Notice that since DC and CD have the same
characteristic polynomial, this is also the case for CD.
Let us recall that we argued that our system (28) and (29)

is stable if and only if the eigenvalues of A are all pure
imaginary. This means, since by deriving (28) and (29)
again one can decouple the system of equations, that the
eigenvalues of A2 are all real and negative. But since

A2 ¼
� −CD 0

0 −CD
�
, we know that the spectrum of A2

is going to be inR− ifH has a minimum at the QP solution.
So we know that if H has a minimum at a QP solution then
this solution is linearly stable.
Notice that this reasoning also holds ifH has a maximum

at a QP solution; in that case the solution will have only
unstable modes (we however never observed such a
solution).

APPENDIX D: NUMERICAL INTEGRATION
METHOD

The integration of the TTF equations (3) requires special
care as, depending on the values of the coefficients Aj, they
can become stiff. Stiff equations can be handled with
explicit methods—where the time step must be small

enough to ensure stability—or implicit methods—where
stability issues can be more easily avoided but care must be
exercised so as not to “discard” relevant short-time-scale
physics by adopting too large a time step. We have
implemented both explicit and implicit methods as well
as performed self-convergence in our analysis to ensure the
correctness of the obtained results.
In particular, we have employed the explicit (predictor-

corrector) Adams method as well as backward differ-
entiation formulas (both with adaptive time stepping)
and, as in [34], the implicit Runge-Kutta scheme of order
6. As an illustration, we present here two tests of the
validity of the implicit scheme adopted and our strategy to
ensure no relevant short time scale is discarded. We held
fixed the double precision employed and varied the
precision of our adaptive step size method by 16p=10
digits, p ¼ 1;…; 10. Figure 18 illustrates the change in

FIG. 19 (color online). The evolution of the real part of the 50th
mode, for the extremal values of p we took, 1 and 9. The
difference between the two curves is of order 10−10. We used
jmax ¼ 100 for these calculations.

FIG. 18 (color online). The error in the total energy E for a
Gaussian initial data of variance σ ¼ 0.4, using different values of
p. We used jmax ¼ 100 for these calculations.
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conserved energy E vs integration time for different values
of p. As is evident in the figure, the error quickly converges
to a limit function, which is already reached for p ¼ 4. (The
remaining error is due to the double precision numbers.)
We note that the results presented through the paper have
been obtained with p ¼ 5 with the implicit method.

To further illustrate that no relevant short-time-scale
physics was accidentally discarded by the use of an implicit
integration scheme, we show in Fig. 19 the evolution of a
representative mode j ¼ 50 mode for two rather distinct
values of p. The difference between these two figures is of
order 10−10.
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