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Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger

than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in

Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaı̂tre-Robinson-

Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust

cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case.

Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an

inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We

investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green

and R.M. Wald, Phys. Rev. D 83, 084020 (2011).], which allows for such nonlinearity at small scales. We

propose a relatively straightforward dictionary—which is exact at the linearized level—that maps

Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our ‘‘ordering

scheme’’ to determine the degree to which the resulting metric and matter distribution solve Einstein’s

equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at ‘‘order 1’’ at small

scales and at ‘‘order �’’ at large scales. We then find the additional corrections to the metric and matter

distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some

interest in their own right, our main purpose in calculating them is that their smallness should provide a

criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We

expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this

should provide strong justification for the use of Newtonian simulations to describe relativistic cosmol-

ogies, even on scales larger than the Hubble radius.
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I. INTRODUCTION

With the improvements in computational abilities that
have taken place in recent years, it is now feasible to do
numerical simulations of structure formation in cosmology
on scales comparable to—or even larger than—the Hubble
radius. Such simulations are being carried out by a number
of groups [1–4]. However, these simulations are being
carried out using Newtonian gravity. Although it would
appear reasonable to expect Newtonian gravity to yield a
good description of phenomena on scales much smaller
than the Hubble radius—except, of course, in the immedi-
ate vicinity of strong field objects—at first thought, it might
seem absurd that it could be expected to yield a reliable
description of phenomena on scales comparable to, or
larger than, the Hubble radius. After all, Newtonian gravity
posits forces that act instantaneously over arbitrarily large
distances; whereas, the dynamical evolution laws of gen-
eral relativity assert that all influences propagate causally
and that the distribution of matter outside of one’s past
light cone is irrelevant. Similarly, the Newtonian gravity
description of the Hubble expansion involves relative mo-
tion of bodies; whereas, the general relativistic description
involves the expansion of space. Why should Newtonian

gravity give an accurate description of behavior on scales
comparable to—or greater than—the Hubble radius, when
the relative velocity of bodies is comparable to—or greater
than—the speed of light?
Nevertheless, as we shall review in the next section, it is

well known (see, e.g., [5]) that under the assumptions of
spatial homogeneity and isotropy, the equations for a uni-
formly expanding pressureless fluid (‘‘dust’’) in Newtonian
gravity are identical to the dynamical equations for a dust
filled Friedmann-Lemaı̂tre-Robinson-Walker (FLRW) uni-
verse in general relativity—even in the case of nonvanish-
ing spatial curvature. An explanation for this remarkable
correspondence can be found from the fact that in both
Newtonian gravity and general relativity, in the presence of
spherical symmetry, the behavior of a comoving ball of
dust does not depend upon the distribution of matter out-
side of the ball.1 Thus, in both Newtonian gravity and
general relativity, the dynamical behavior of a comoving
ball of dust in a homogeneous, isotropic universe is the
same as it would be if that ball were placed in an empty,
asymptotically flat spacetime. However, for a sufficiently
small ball of dust in an otherwise empty spacetime,
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1This fact is closely related to the fact that there is no
gravitational field/curvature inside a spherical shell of matter
in Newtonian gravity (by Newton’s theorem) and general rela-
tivity (by Birkhoff’s theorem).
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Newtonian gravity should be an excellent approximation to
general relativity. Thus, for a sufficiently small ball, the
density and comoving radius of the ball must satisfy the
same dynamical equations in Newtonian gravity and gen-
eral relativity. This implies that the equations for the
density and comoving radius in a homogeneous, isotropic
Newtonian dust cosmology must coincide with the equa-
tions for the density and scale factor in a FLRW dust
cosmology. This correspondence continues to hold in the
presence of a cosmological constant term in the Newtonian
and general relativistic equations.

The above argument relies crucially on exact spherical
symmetry. Thus, one might expect that no such correspon-
dence between Newtonian and relativistic cosmologies
would hold if one perturbs the homogeneous, isotropic
solutions away from spherical symmetry. Remarkably,
however, the correspondence between Newtonian and rela-
tivistic cosmologies extends into the regime of linearized
perturbation theory in the case of perturbations off of a
spatially flat FLRW dust cosmology. More precisely, as
pointed out by Bardeen [6], and as reviewed in the next
section, the scalar gauge-invariant variables of linearized
relativistic perturbation theory obey exactly the same equa-
tions as the variables describing linearized irrotational dust
perturbations of the corresponding Newtonian cosmology.
Furthermore, it is not difficult to see that this correspon-
dence extends to the vector case as well, i.e., vector
gauge-invariant variables of linearized relativistic pertur-
bation theory obey exactly the same equations as the
corresponding Newtonian variables describing vorticity
perturbations. Thus, the scalar and vector sectors2 of line-
arized relativistic perturbation theory off of a spatially flat
FLRW dust model are in exact correspondence with arbi-
trary Newtonian perturbations off of the corresponding
Newtonian dust cosmology.

Further justification for the validity of the Newtonian
approximation in cosmology is provided by the work of
Oliynyk [7,8] (see also Futamase [9]). Oliynyk rigorously
proved that for a given 3-torus Newtonian cosmology, there
exists a one-parameter family of general relativistic solu-
tions that limits to this Newtonian cosmology, thus show-
ing that there are general relativistic solutions that are
arbitrarily close to the Newtonian solution. However, for
Oliynyk’s one-parameter families, the ratio of the size of
the universe to the Hubble radius goes to zero in the limit.3

Thus, the general relativistic solutions proven by Oliynyk

to be very close to a Newtonian solution have size small
compared with the Hubble radius, and thus have no ‘‘long
wavelength part.’’ Thus, Oliynyk’s results do not directly
address the issue of whether Newtonian simulations
on scales comparable to the Hubble radius correspond
closely to a general relativistic solution, but it can be
viewed as providing additional justification for the validity
of Newtonian gravity on scales small compared with the
Hubble radius.
Taken together, the above considerations strongly sug-

gest that for a universe that is sufficiently close to a
spatially flat FLRW dust model, Newtonian gravity should
provide a good description of structure formation on all
scales. However, the situation is far from straightforward
for the following reasons: (i) Although, as described above,
there is a correspondence at linearized order between
Newtonian theory and general relativity, the dictionary
needed to translate a linearized Newtonian solution into
metric and matter perturbations in any particular gauge is
nontrivial, and it is not obvious how this dictionary com-
pares with standard dictionaries used for the Newtonian
and post-Newtonian approximations to general relativity
on small scales. Thus, it is not obvious how to produce a
‘‘global dictionary’’ that works on all scales. (ii) If one has
a candidate global dictionary, it is not obvious how to
formulate criteria to determine whether the resulting gen-
eral relativistic spacetime is ‘‘sufficiently close’’ to a solu-
tion to Einstein’s equation to trust its predictions. The main
complication here is that the failure to take post-Newtonian
corrections into account on small scales will cause the
general relativistic spacetime to fail to satisfy Einstein’s
equation by a larger amount than the failure to properly
account in any way for the long wavelength perturbations.
For most applications in cosmology, the tiny post-
Newtonian corrections to the metric and matter motion
on small scales are of no interest, but the leading order
deviation of the metric and matter density from a FLRW
model on large scales is of great interest. Thus, the proper
criteria for being ‘‘sufficiently close’’ to a solution to
Einstein’s equation must take into account the distinction
between small scales and large scales. (iii) One would like
to know explicitly what the dominant corrections to
Newtonian cosmology are, both to be able to quantitatively
judge its reliability and to be able to make its predictions
more accurate.
The difficulties in addressing the above issues stem from

the fact that the approximations of Newtonian gravity
(which, a priori, is expected to be good on small scales)
and linearized perturbation theory (which, a priori, is
expected to be good on large scales) are incompatible.
Specifically, in the Newtonian gravity approximation cer-
tain nonlinear terms in the equations are kept (as they must
be at small scales), but it is essential that time derivatives
of quantities be small compared with space derivatives
[7,8,10,11]. By contrast, linearized perturbation theory

2The tensor modes correspond to additional degrees of free-
dom present only in general relativity, and they have no
Newtonian correspondence.

3Oliynyk formulated his limit as one in which the 3-torus
remains of fixed size, but the speed of light—and the Hubble
radius—goes to infinity. By rescaling the spatial coordinates, his
limit can be reformulated as one in which the speed of light
remains constant and the Hubble radius goes to a well-defined
limit, but the size of the 3-torus then approaches zero in the limit.
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allows time derivatives of quantities to be comparable to
their space derivatives (as they must be at large scales), but
it is essential that all nonlinear terms be negligible. In order
to properly treat phenomena on all scales, one needs an
approximation scheme that can accommodate nonlinear
phenomena on small scales but treats time derivatives on
the same footing as space derivatives on large scales. We
recently proposed an approach that accomplishes this [12],
and we will apply this approach here.4

The main questions we wish to address in this paper
can now be stated concretely as follows. Suppose that a
Newtonian cosmological simulation has been performed
on a 3-torus (i.e., periodic boundary conditions), where the
size of the 3-torus may be larger than the Hubble radius.
For convenience, we assume that the Newtonian solution
has been presented as a continuum solution, i.e., that
suitable smoothing has been done if the solution was
produced from an N-body simulation. We would like to
know the following: (1) What general relativistic space-
time and dust matter distribution should we associate to
this Newtonian cosmology, i.e., what ‘‘global dictionary’’
should we use? (2) To what extent is this spacetime a
solution to Einstein’s equation, i.e., what are the leading
order terms that fail to satisfy Einstein’s equation?
(3) What are the leading order corrections to the metric
and dust distribution that improve the accuracy of this
solution, and how large are these corrections?

Our approach will be to use the framework of [12] to
provide a ‘‘counting scheme’’ for the sizes of terms in
Einstein’s equation. We will start with a candidate ‘‘global
dictionary,’’ which is suggested by the known correspond-
ences between Newtonian gravity and general relativity in
the exactly homogeneous and isotropic case and at the
linearized level. We will then see that in our counting
scheme, the resulting general relativistic spacetime fails
to satisfy Einstein’s equation to Oð1Þ at small scales and to
Oð�Þ at large scales. The main effort in our paper will then
be to find the corrections to the metric and dust distribution
that, within our counting scheme, improve the accuracy of
the solution to Oð1Þ at small scales and to Oð�Þ at large
scales. It should be emphasized that we shall not prove
existence of a one-parameter family of solutions to
Einstein’s equation with the properties we desire—a far
more difficult task than solving for leading order correc-
tions. Nevertheless, if the leading order corrections we
obtain are small compared with terms appearing in the
original global dictionary, we believe that this provides a
strong indication that there is a general relativistic solution
that corresponds closely to the Newtonian cosmology.
Conversely, if these corrections are not negligibly small,
then either the Newtonian cosmology is not providing
a sufficiently accurate representation of the general

relativistic spacetime or the dictionary being used will
have to be significantly modified.
Our analysis also addresses concerns that have been

expressed with regard to the use of a ‘‘Newtonianly per-
turbed FLRW metric,’’ which corresponds to the using the
‘‘abridged dictionary’’ given by (2.46), (2.47), and (2.48)
below. Ishibashi andWald [15] have argued that this metric
should provide an excellent description of our universe.
However, several authors [16,17] have objected to the use
of this metric on the grounds that, if taken literally, and dust
peculiar velocities are ignored, then strong constraints
relating to exact solutions of Einstein’s equation apply,
and the metric is only able to describe a spatially homoge-
neous continuum. Other concerns have been raised by
Rasanen [18]. The spacetime metric and dust matter dis-
tribution that we produce in this paper—as summarized in
Sec. IV—solves Einstein’s equation to a much higher
degree of accuracy than the Newtonianly perturbed
FLRW metric does, and, in particular, fully takes into
account peculiar velocities and leading nonlinear terms in
the Einstein equation. No inconsistencies of any kind are
encountered in obtaining this much more accurate solution.
Thus, the approximate solution considered in [15] should
be fully justified provided only that the corrections to
(2.46), (2.47), and (2.48) given in Sec. IV are negligibly
small, as we argue is the case.
We remark that if one has an equation EðFÞ ¼ 0, one

must draw a clear distinction between having a quantity f
that approximately solves this equation [i.e., EðfÞ � 0] as
compared with having a quantity f that is an approximate
solution [i.e., f � F for some exact solution EðFÞ ¼ 0]. If
the equation is suitably well posed, if EðfÞ � 0, and if F is
the exact solution with the same initial data as f, then f and
F will remain close to each other for sufficiently early
times. However, f may fail to remain close to F at late
times because of the buildup of secular effects. For ex-
ample, the Newtonian solution for the motion of Mercury
solves the general relativistic equations of motion to an
excellent approximation at all times, but provides a very
poor approximation to the general relativistic solution for
the position of Mercury after�106 years. In this paper, we
are concerned with the issue of obtaining general relativ-
istic spacetimes that solve Einstein’s equation to an excel-
lent approximation at all times, but we will not be
concerned with the issue of whether these spacetimes
provide good global-in-time approximations to exact solu-
tions of Einstein’s equation.
In the next section, we shall review the correspondence

between homogeneous, isotropic Newtonian cosmology
with dust matter and FLRW models in general relativity,
as well as the correspondence at the linearized level be-
tween these models in the marginally bound/spatially flat
case. On the basis of this correspondence, we will propose
a dictionary (2.40), (2.41), (2.42), (2.43), and (2.44) to
translate Newtonian cosmologies into general relativistic4Our approach is closely related to [13]; see also [14].
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spacetimes. In Sec. III, we will apply our counting scheme
[12] to analyze how well Einstein’s equation is being
satisfied, and we will obtain corrections needed to satisfy
Einstein’s equation toOð1Þ. We will then obtain the further
modifications to the metric and dust distribution needed to
obtain a solution to Einstein’s equation to Oð�Þ at large
scales. These corrections are of some interest in their own
right. For example, as we shall see in Appendix B, there are
small modifications of some global properties of the cos-
mology, such as a slight modification of the expansion rate
and the introduction an (even smaller) anisotropic expan-
sion. However, our main purpose in determining these
corrections is to provide a criterion for the validity of the
Newtonian cosmology as translated into a general relativ-
istic spacetime via the dictionary (2.40), (2.41), (2.42),
(2.43), and (2.44) and/or its abridgment (2.46), (2.47), and
(2.48) or its simplification (2.49), (2.50), and (2.51): The
full set of metric and matter corrections to our original
dictionary are given by Eqs. (4.1), (4.2), (4.3), (4.4), (4.5),
(4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), and (4.13) and
these corrections can be computed straightforwardly for
any given Newtonian cosmology. The smallness of these
corrections should provide a reliable criterion for judging
the validity of using a Newtonian simulation with the
dictionary (2.40), (2.41), (2.42), (2.43), and (2.44) (or its
abridgment or simplification) to describe a relativistic
cosmology.

II. BACKGROUND AND LINEARIZED
CORRESPONDENCE

In this section we shall review the correspondence be-
tween homogeneous, isotropic Newtonian dust cosmology
and FLRW models, as well as the correspondence between
linearized perturbations of these models. We shall then
propose a dictionary—valid to linearized order—the accu-
racy of which will be evaluated and improved upon in the
following section.

In Newtonian gravity, the gravitational field is described
by a Newtonian potential �, and the dust matter is de-
scribed by a mass density � and a velocity field vi. The
Newtonian field potential is related to the mass density by
the Poisson equation

@i@i�þ� ¼ 4��; (2.1)

which we have generalized to allow for the presence of a
cosmological constant �. In addition, the matter variables
must satisfy mass conservation and Euler equations, which,
for dust matter, take the form

@t�þ @ið�viÞ ¼ 0; (2.2)

@tð�viÞ þ @jð�vivjÞ ¼ ��@i�: (2.3)

In these equations, the flat Euclidean metric of space is
used to contract indices.

A. Background correspondence

As a cosmological ansatz, we seek a solution to the
above equations of Newtonian gravity in which the density
is spatially uniform, � ¼ �0ðtÞ, and the velocity field is
uniformly expanding, vi ¼ HðtÞxi. Note that H is related
to the radius, a, of any comoving ball by

H ¼ 1

a

da

dt
: (2.4)

Since @iv
i � 3HðtÞ, (2.2) implies that

@t�0 þ 3H�0 ¼ 0; (2.5)

from which it follows that

�0 ¼ �0;inita
�3: (2.6)

Using mass conservation, we can eliminate � from the
Euler equation,

@tv
i þ vj@jv

i ¼ �@i�: (2.7)

The Poisson equation, (2.1), has the nonsingular solution

�0 ¼ 2�

3
�0r

2 ��

6
r2 þ AðtÞ: (2.8)

Substituting for v and �, we obtain

dH

dt
þH2 ¼ � 4�

3
�0 þ�

3
; (2.9)

which is one of the Friedmann equations. To obtain the
other Friedmann equation, we rewrite this equation as

1

a

d2a

dt2
¼ � 4�

3

�0;init

a3
þ�

3
: (2.10)

Integrating once, we obtain

H2 ¼ 8�

3
�0 þ�

3
� k

a2
; (2.11)

where k is a constant of integration. By choosing the size
of the comoving ball appropriately, we may choose k to
take the values 0;�1. When � ¼ 0, the value of k deter-
mines whether the universe is unbound and expands for-
ever (k ¼ �1), is marginally bound and expands forever
but with expansion velocity approaching zero (k ¼ 0), or is
bound and will recollapse within finite time (k ¼ þ1). Of
course, in Newtonian gravity, k does not have any inter-
pretation in terms of spatial curvature; space is always
Euclidean.
Equations (2.9) and (2.11) are precisely the equations

satisfied by dust FLRW models in general relativity. The
underlying reason for this exact correspondence was dis-
cussed in the Introduction.
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B. Linearized correspondence

We first rewrite the exact Newtonian equations relative
to some (arbitrarily chosen) background solution of the
previous section. We introduce comoving coordinates

x0i ¼ xi

a
: (2.12)

We then define the velocity variable v0i by

v0i � a
dx0i

dt0
¼ dxi

dt
� 1

a

da

dt
xi ¼ vi �Hxi; (2.13)

so v0i measures the velocity relative to the Hubble flow of
the background solution. We also define density and po-
tential deviations from the background, � and c , by

� ¼ �0ð1þ �Þ; (2.14)

� ¼ �0 þ c : (2.15)

In terms of these quantities, the Newtonian equations are

@i
0
@i0c ¼ 4�a2�0�; (2.16)

@t0�þ 1

a
@i0 ðð1þ �Þv0i0 Þ ¼ 0; (2.17)

@t0v
0i0 þ 1

a
v0j0@j0v0i0 þHv0i0 ¼ � 1

a
@i

0
c : (2.18)

From now on, since we will always work in comoving
coordinates, we shall drop the primes.

Next, we rewrite these equations using ‘‘conformal
time’’ � defined by

d�

dt
¼ 1

a
: (2.19)

We also denote derivatives with respect to conformal time
with overdots. In terms of the conformal time variable, the
Newtonian background equations are

_a2

a2
¼ 8�

3
a2�0 þ�

3
a2 � k; (2.20)

d

d�

�
_a

a

�
¼ � 4�

3
a2�0 þ�

3
a2; (2.21)

_� 0 þ 3
_a

a
�0 ¼ 0; (2.22)

and the Newtonian equations for the quantities describing
the deviations from the background are

@i@ic N ¼ 4�a2�0�N; (2.23)

_�N þ @iðð1þ �NÞvi
NÞ ¼ 0; (2.24)

_v i
N þ vj

N@jv
i
N þ _a

a
vi
N ¼ �@ic N; (2.25)

where we have now added a subscript N so that these
Newtonian quantities can be easily distinguished from

the corresponding general relativistic quantities that we
will introduce later. We emphasize that (2.23), (2.24), and
(2.25) are exact. We shall assume below that these equa-
tions are solved on a 3-torus, i.e., a ‘‘box’’ at fixed comov-
ing coordinates (of the background solution) with periodic
boundary conditions.
Linearizing (2.23), (2.24), and (2.25) about the back-

ground solution, we obtain

@i@ic
ð1Þ
N ¼ 4�a2�0�

ð1Þ
N ; (2.26)

_� ð1Þ
N þ @iv

ð1Þi
N ¼ 0; (2.27)

_v ð1Þi
N þ _a

a
vð1Þi
N ¼ �@ic ð1Þ

N : (2.28)

We now compare the linearized Newtonian equations with
the linearized general relativistic equations about a dust
FLRW model. In [6], Bardeen decomposed linearized
metric and stress-energy perturbations into their scalar,
vector, and tensor parts, which evolve independently. He
then introduced gauge-invariant quantities to describe
these perturbations. In the case of a perfect fluid, the two
scalar gauge-invariant variables describing metric pertur-
bations are related—in his notation, �H ¼ ��A—so the
scalar perturbations are fully described by�H (or�A), the
scalar part of the velocity perturbation, vi

s, and a density
perturbation variable �m [defined by Eqs. (3.9, 3.10, 3.11,
3.13) of [6]]. We can similarly decompose a linearized

Newtonian perturbation: c ð1Þ
N and �ð1Þ

N are scalar quantities,
and the velocity perturbation can be decomposed as

vð1Þi
N ¼ vð1Þi

Ns þ vð1Þi
Nv ; (2.29)

where vð1Þi
Ns can be written as a gradient and @iv

ð1Þi
Nv ¼ 0.

Newtonian perturbations have no tensor part. It is then
straightforward to see that, as pointed out by Bardeen
[6], under the correspondence

c ð1Þ
N $ �A ¼ ��H; (2.30)

vð1Þi
Ns $ vi

s; (2.31)

�ð1Þ
N $ �m; (2.32)

the linearized Newtonian equations become identical to the
equations describing scalar perturbations of a spatially flat
dust cosmology as given by Eqs. (4.3, 4.5, 4.8) of [6]. Note
that this correspondence holds only for perturbations of
spatially flat models, i.e., there are additional terms in the
linearized Einstein equation when the background solution
has nonvanishing spatial curvature.
It is not difficult to see that the exact correspondence

between linearized Newtonian gravity and general relativ-
istic perturbations of spatially flat models extends to vector
perturbations as well with

vð1Þi
Nv $ vi

c; (2.33)
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where the gauge-invariant quantity vi
c is defined by

Bardeen’s Eq. (3.23). Specifically, the vector part of the

linearized Euler Eq. (2.28) for vð1Þi
Nv is identical to Bardeen’s

Eq. (4.13) for vi
c. There are no additional Newtonian

equations for vector perturbations. However, there is an
additional general relativistic equation [Bardeen’s
Eq. (4.12)],

@j@j�
i ¼ �16�a2�0v

i
c; (2.34)

which is a Poisson equation for a quantity�i not present in
Newtonian theory. On a torus, this equation has a solution
if and only if there is no spatially homogeneous part of
vi
c, i.e., Z

d3xvð1Þi
Nv ¼ 0: (2.35)

This equation must hold for all for all times �, but it is
easily checked that this equation is preserved under time
evolution, so it suffices to impose it at any one time. Thus,
(2.35) is a constraint that must be imposed upon a line-
arized Newtonian solution in order that it correspond to a
linearized solution of Einstein’s equation under the corre-
spondence (2.33)

In summary, provided only that the constraint (2.35) is
satisfied, there is an exact correspondence, given by (2.30),
(2.31), (2.32), (2.33), and (2.34), between the complete
linearized Newtonian equations for dust matter off of a
homogeneous and isotropic background and the scalar and
vector parts of the linearized Einstein equation off of a
spatially flat dust FLRW background. As previously noted,
there are no counterparts to tensor perturbations in
Newtonian gravity, i.e., general relativity has these addi-
tional degrees of freedom not present in Newtonian gravity.

C. A Proposed dictionary

Based upon the results of the previous subsections, we
now shall propose a dictionary that translates a solution
ðc N; �N; v

i
NÞ of the exact Newtonian Eqs. (2.23), (2.24),

and (2.25) into a general relativistic spacetime metric gab
and dust matter stress-energy tensor Tab ¼ �uaub. In the
next section, we shall investigate the extent to which
ðgab; TabÞ satisfies Einstein’s equation as well as what
further corrections need to be made to ðgab; TabÞ to make
it solve Einstein’s equation to higher accuracy.

First, the Newtonian Eqs. (2.23), (2.24), and (2.25) were
written relative to a ‘‘background solution’’ of (2.9) and
(2.11) with ‘‘scale factor’’ a and mass density �0. Since
these Newtonian background equations are identical to the
equations for a dust filled FLRW general relativistic
spacetime, we define our dictionary so that it associates
the corresponding FLRW spacetime to this background
solution. Thus, we have defined our dictionary for the
case c N ¼ �N ¼ vi

N ¼ 0. In the following, we shall
restrict consideration to the case where k ¼ 0 for the
background solution, since this is the only case where we

expect a good dictionary to exist when deviations from
homogeneity and isotropy occur. We shall assume that
periodic boundary conditions have been imposed on the
Newtonian background solution, so that the corresponding
FLRW background solution has 3-torus spatial slices. For
convenience, we assume that the comoving spatial coor-
dinates of the Newtonian and FLRW background solutions
range between 0 and 1.
In order for our dictionary to produce a definite general

relativistic spacetime, we must make a choice of gauge for
the metric. In the context of linearized perturbation theory,
a natural and very useful gauge choice is the longitudinal
gauge, in which the metric takes the form

ds2 ¼ a2ð�Þ½�ð1þ 2AÞd�2 � 2Bidx
id�

þ ðð1þ 2HLÞ�ij þ hijÞdxidxj�; (2.36)

where @iBi ¼ 0, @jhij ¼ 0 and hii ¼ 0, and spatial indices

i; j; k; . . . are raised and lowered with the background flat
Euclidean metric �ij. In the context of linearized perturba-

tion theory, the quantities A, Bi, HL, and hij represent the

metric perturbation, and it can be shown that an arbitrary
metric perturbation can be put in the form (2.36) by an
infinitesimal gauge transformation. It also can be shown
that this gauge is essentially unique, i.e., there is essentially
no additional gauge freedom that maintains the form
(2.36). However, linearized perturbation theory is not ade-
quate for our purposes, since our dictionary is required to
map Newtonian solutions that differ by a finite amount
from the Newtonian background solution into metrics
that differ by a finite amount from an FLRW model.
Nevertheless, it should be possible to show via the implicit
function theorem that for metrics that differ from an
FLRW model by a sufficiently small but finite amount, the
metric form (2.36)—with @iBi ¼ 0, @jhij ¼ 0 and

hii ¼ 0—always can be imposed by a (nonlinear) gauge
transformation. We shall not attempt to prove such a result
here, and will merely take (2.36) as an ansatz for the metric
in constructing our dictionary. However, we believe that
imposition of the metric form (2.36) does not involve any
loss of generality if the metric is sufficiently close to an
FLRW model.
The stress-energy tensor of dust in the general relativis-

tic spacetime takes the form

Tab ¼ �uaub: (2.37)

We define the three-velocity, vi, of the dust to be such that
the components, u�, of the four-velocity in our gauge are
proportional to ð1; viÞ. Normalizing using the metric form
(2.36), we obtain

u�¼ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2Aþ2Bjv

j�ðð1þ2HLÞ�jkþhjkÞvjvk
q ð1;viÞ:

(2.38)
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Thus, this equation gives the formula for the 4-velocity ua

appearing in (2.37) in terms of the 3-velocity vi that will be
specified by our dictionary below. We define the fractional
density perturbation � in the general relativistic model via

� ¼ �0ð1þ �Þ: (2.39)

As already stated above, the Newtonian solution is
specified by ðc N; �N; v

i
NÞ. With the above gauge choice,

the general relativistic spacetime and matter distribution is
specified by ðA; Bi; HL; hij; �; v

iÞ. Our proposed dictionary
will therefore be defined by providing formulas for A, Bi,
HL, hij, �, and vi in terms of the Newtonian variables. To

obtain this dictionary, we start by taking the formulas that
hold at linearized order under the correspondence of the
previous section, which we obtain by expressing the
Bardeen variables appearing in (2.30), (2.31), (2.32), and
(2.33) in terms of ðA; Bi; HL; hij; �; v

iÞ. Then we improve

our definition for Bi (and correspondingly for vi) by re-
quiring consistency with the nonlinear momentum con-
straint at small scales, leading to the replacement of �0v

i

by �0ð1þ �NÞvi. We thereby propose the following
dictionary:

A ¼ �HL ¼ c N; (2.40)

ð1þ�NÞvi¼ð1þ�NÞðvi
NþBiÞ�ð1þ�NÞvi

N

��������v
; (2.41)

� ¼ �N � 3

4��0a
2

��
_a

a

�
2
c N þ _a

a
_c N

�
; (2.42)

hij ¼ 0; (2.43)

and Bi is the solution to the equation

@j@jB
i ¼ �16��0a

2ðð1þ �NÞvi
N � ð1þ �NÞvi

NÞjv;
(2.44)

with5 �Bi ¼ 0, where the overbar denotes spatial average,
i.e.,

�f �
Z

d3xf: (2.45)

(Recall that the comoving spatial coordinates are assumed
to range from 0 to 1.) In (2.41) and (2.44), the notation jv
denotes the ‘‘vector part’’ of a quantity in a decomposition
of the type (2.29).

At large scales, one would expect the vector part of vi to
be negligible because in linear perturbation theory, vector
modes are known to decay [6]. In addition, comparing the
Poisson equation for Bi with the Poisson equation for c N ,
one would expect Bi to be smaller than c N by order v=c at
small scales, and thus Bi should be negligible compared
with A and HL at all scales. Thus, (2.41) should yield a
negligibly small correction to the equation vi ¼ vi

N . Thus,
under normal circumstances, it should be acceptable to

replace our proposed global dictionary with the following
abridged version of the dictionary:

A ¼ �HL ¼ c N; (2.46)

vi ¼ vi
N; (2.47)

� ¼ �N � 3

4��0a
2

��
_a

a

�
2
c N þ _a

a
_c N

�
; (2.48)

together with Bi ¼ hij ¼ 0. This abridged dictionary cor-

responds to a continuum version of the dictionary6 given
by Chisari and Zaldarriaga [19].
Finally, on small scales �N should dominate the other

terms appearing on the right side of (2.42). Thus, on scales
much smaller than the Hubble radius, it should be possible
to use the following simplified version of the dictionary:

A ¼ �HL ¼ c N; (2.49)

vi ¼ vi
N; (2.50)

� ¼ �N; (2.51)

together with Bi ¼ hij ¼ 0. This simplified dictionary is

very commonly assumed. However, on scales comparable
to the Hubble radius, all terms in (2.42) should be of
comparable size, so if one is interested in investigating
behavior on large scales, the full dictionary or abridged
dictionary should be used.
As explained above, our dictionary (2.40), (2.41), (2.42),

(2.43), and (2.44) has been constructed so as to produce a
solution of Einstein’s equation to linearized order in
ðA; Bi; HL; hij; �; v

iÞ. A Newtonian cosmology that corre-

sponds to our universe should have c N � 1 and jvi
Nj � 1,

but will normally have �N � 1 on small scales. Therefore,
it is not obvious, a priori how accurate our dictionary is in
producing a solution to Einstein’s equation. In fact, it is
clear that there may be difficulties in this regard because the
dictionary should produce a spacetime that nearly satisfies
the linearized Einstein equation on small scales, but the
linearized Einstein equation is incompatible (via the line-
arized Bianchi identity) with the nonlinear dynamical be-
havior of matter7 that occurs on small scales. We now
investigate how close (2.40), (2.41), (2.42), (2.43), and
(2.44) comes to producing a solution to Einstein’s equation.

III. COUNTING SCHEME AND
IMPROVED DICTIONARY

As stated at the end of the previous section, we wish to
determine how close our dictionary comes to producing a

5The condition �Bi ¼ 0 can be imposed by using the coordinate
freedom xi ! xi þ FiðtÞ.

6Their definition of � differs from ours by a term involving the
perturbed volume element.

7In many references (see, e.g., [19,20]), the linearized Einstein
equation is written down together with the nonlinear dynamical
equations for matter. This combined system of equations is
mathematically inconsistent.
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solution of Einstein’s equation when the Newtonian cos-
mology has c N � 1 and jvi

Nj � 1, but may have
�N � 1 at small scales. To analyze this issue, we need a
consistent approximation scheme that can take advantage
of the fact that the deviation of the metric from an FLRW
model is small on all scales, but permits very large devia-
tions of the stress-energy tensor from an FLRW model to
occur on small scales. Such an approximation scheme was
recently developed by us in [12] and used to analyze the
backreaction effects of small scale inhomogeneities on
large scale dynamics. We refer the reader to that reference
for the precise mathematical formulation of the approxima-
tion. For our purposes here, it suffices to observe that, as in
ordinary perturbation theory, in our approximation scheme
there is a ‘‘small parameter’’ � (denoted � in [12]) that

measures the deviation, 	ab ¼ gab � gð0Þab , of the metric gab
from a background metric gð0Þab , so 	ab ¼ Oð�Þ. However,
unlike ordinary perturbation theory, first spacetime deriva-
tives of 	ab are allowed to be Oð1Þ, and second spacetime
derivatives of 	ab—and, hence, the deviations of the stress-
energy tensor from the background stress-energy—are al-
lowed to be Oð1=�Þ. In particular, the quadratic products
rc	abrf	de and 	abrcrf	de that appear in Einstein’s

equation are Oð1Þ, so our approximation scheme allows
small scale inhomogeneities to affect the dynamics of the
background metric. One of the main results of [12] is that,
in fact, the only possible effect that these nonlinear terms
can have on the dynamics of the background metric is to
contribute an effective stress-energy that is traceless and
has positive energy, corresponding to the presence of gravi-
tational radiation. For the present work, we assume that the
universe contains a negligible amount of gravitational ra-
diation, so that this effective stress-energy tensor can be set
to zero, and the background metric (which has FLRW
symmetry) therefore obeys the ordinary Einstein equation
with dust stress-energy tensor.

In addition to analyzing the effects of small scale inho-
mogeneities on the dynamics of the background metric, in
[12] perturbation theory was generalized to allow for sig-
nificant nonlinearity at small scales, while at the same time
maintaining a linearized description at large scales (see also
[13]). In order to ascribe different behavior to perturbations
at different scales these notions must of course be defined.
In [12], the notion of the ‘‘long wavelength part’’ of quan-
tities was defined in a mathematically precise manner by
considering the weak limit of these quantities as � ! 0. As
explained in [12], at sufficiently small but finite �, this
should correspond closely to taking an average over a
spatial scale8 L that is small compared with the background
curvature (i.e., the Hubble radius) but sufficiently large that
at this scale and beyond we have j�j � 1. For the present

work, we shall identify the long wavelength part, AðLÞ
a1			an , of

a tensor field, Aa1			an , with the spatial average9 of its

components

AðLÞ
�1			�nðxÞ ¼ hA�1			�n

iðxÞ
�

Z
d3x0WLðx� x0ÞA�1			�n

ðx0Þ; (3.1)

using a suitable ‘‘window function,’’WLðx� x0Þ, of size L,
i.e., a smooth function which is equal to 1 for a2jx� x0j2 <
L, and which smoothly falls to 0 outside of this region.10

The requirement that L be much smaller than the back-
ground curvature scale ensures that this averaging process
is well-defined, whereas the requirement that L be suffi-
ciently large that j�j � 1 should ensure that the long
wavelength parts of perturbations behave linearly.
We define the ‘‘short wavelength part’’ of Aa1			an by

AðSÞ
a1			an � Aa1			an � AðLÞ

a1			an ; (3.2)

thereby providing a decomposition of any quantity into its
long and short wavelength parts. The framework of [12]
allows one to make different assumptions in a mathemati-
cally consistent manner about the long and short wave-
length parts of the various quantities. In particular,
derivatives of short wavelength parts can pick up the
factors of 1=� described above, but derivatives do not
increase the size of long wavelength parts.
Our framework can be straightforwardly applied to cos-

mological Newtonian gravity. It is natural in this case also
to impose the additional conditions that velocities are
suitably ‘‘small’’ and time derivatives of quantities are
correspondingly small compared with space derivatives
at small scales. Specifically, the sizes we assign11 to the
short wavelength part of the quantities ðc N; v

i
N; �NÞ of the

previous section are given in Table I. On the other hand,
the long wavelength parts of all of these quantities and
their space and time derivatives are assumed to be Oð�Þ. It
should be noted that certain products of short wavelength
quantities can have Oð�Þ large scale average. In particular,
long wavelength quantities corresponding to Newtonian
potential energy,12 kinetic energy, and linear momentum

enter the perturbation equation for 	ðLÞ
ab .

8For the present universe, L � 100 Mpc should meet these
criteria.

9In [12] averages over (short) time intervals were also
performed. The purely spatial averaging we perform here with
a suitable ‘‘window function’’ corresponds precisely to the
averaging done in [13].
10Equivalently, one could work in Fourier transform space and
multiply the Fourier transform, ÂðLÞ

a1			an ðkÞ, by ŴLðkÞ, where
ŴLðkÞ interpolates between 1 (for k < 1=L) and 0 for k � 1=L.
11The orders we assign to the quantities in Table I correspond to
the post-Newtonian orderings of Futamase and Schutz [10] up to
a rescaling of the spatial coordinates, but they differ from the
post-Newtonian orderings of Oliynyk [7,8].
12A priori, h�Nc Ni ¼ Oð1Þ, but due to the fact that �N is
bounded below by �1, in fact h�Nc Ni ¼ Oð�Þ; see the lemma
of Sec. II of [12].
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Our aim here is simply to use the framework of [12] as a
‘‘counting scheme’’ in powers of � to see how close our
dictionary comes to producing a solution to Einstein’s
equation. Specifically, we assume that we have been pro-
vided with a Newtonian cosmological solution where the
‘‘sizes’’ of quantities correspond to Table I. To complete
our ‘‘counting scheme,’’ we must also assign an �-order to

BðSÞ
i . Since Bi is obtained by solving the Poisson Eq. (2.44)

and, according to Table I, the source term is of order ��1=2,

we assign BðSÞ
i the order �3=2.

Having assigned �-orders to all quantities, we may ask
the following question: If we substitute the Newtonian
solution into our dictionary (2.40), (2.41), (2.42), (2.43),
and (2.44) to produce a spacetime metric gab and dust
stress-energy tensor Tab, how close does ðgab; TabÞ come
to satisfying Einstein’s equation?

If we are to have confidence that the dictionary is
producing a good approximation to a solution to
Einstein’s equation, we would want Einstein’s equation
to be solved to at least Oð1Þ in �. This is a nontrivial
requirement, since there are individual terms, such as �,
in Einstein’s equation that are Oð1=�Þ in our counting
scheme. As we shall see below, the dictionary (2.40),
(2.41), (2.42), (2.43), and (2.44) solves Einstein’s equation
toOð1=�Þ but fails to yield a solution to Einstein’s equation
at Oð1Þ in �. Nevertheless, we will then show that we can
make further small corrections to the metric so that
Einstein’s equation does hold to Oð1Þ. As we shall see,
these metric corrections should be Oð�2Þ at small scales
and therefore should be negligible. If so, our original
dictionary (2.40), (2.41), (2.42), (2.43), and (2.44) should
be producing an accurate relativistic cosmology in terms of
its description of the metric and matter distribution on
small scales.

In addition, if the dictionary is to be trusted for its
description of large scale structure—including on scales
comparable to (or larger than) the Hubble radius—we
would want Einstein’s equation to hold to at least Oð�Þ at
large scales. As we shall see below, even after we have
made the necessary corrections to the metric so that
Einstein’s equation is satisfied to Oð1Þ at small scales,
Einstein’s equation will fail to hold to Oð�Þ at large scales
in our counting scheme. We will therefore make further
large scale corrections to the dictionary so that Einstein’s

equation holds to Oð�Þ at large scales. As we shall see,
although these corrections are formally of order �, they
would be expected to make negligible corrections to ordi-
nary linearized perturbation theory at long wavelengths. If
so, our original dictionary (2.40), (2.41), (2.42), (2.43), and
(2.44) should be producing an accurate relativistic cosmol-
ogy in terms of its description of the metric and matter
distribution on large scales.
The above corrections provide us with an improved

dictionary that incorporates the dominant general relativ-
istic corrections to (2.40), (2.41), (2.42), (2.43), and (2.44).
Although the improved dictionary is undoubtedly far more
precise than would be needed for most applications, it is
important as a matter of principle to know that corrections
can be made so that Einstein’s equation holds toOð1Þ at all
scales and at Oð�Þ on large scales. Furthermore, for any
given Newtonian cosmology, the correction terms appear-
ing in the improved dictionary can be calculated straight-
forwardly, and their size should give a reliable indication
of the accuracy of the original dictionary (2.40), (2.41),
(2.42), (2.43), and (2.44). If, as indicated above, these
correction terms are negligibly small, then the Newtonian
cosmology should provide—via the original dictionary
(2.40), (2.41), (2.42), (2.43), and (2.44) and/or its abridg-
ment (2.46), (2.47), and (2.48) or simplification (2.49),
(2.50), and (2.51)—an excellent description of what is
predicted by general relativity.

A. Solving einstein’s equation to Oð1Þ
1. How well are Einstein’s equation solved

by the original dictionary?

Appendix A presents the calculation of Einstein’s equa-
tion for the metric (2.36) and stress-energy tensor (2.37),
(2.38), and (2.39), keeping all terms that could potentially
contribute toOð1Þ as well as all terms that could potentially
contribute to Oð�Þ at large scales. Given a Newtonian
cosmological solution ðc N; v

i
N; �NÞ, we substitute it into

the dictionary (2.40), (2.41), (2.42), (2.43), and (2.44), and
substitute the result into Einstein’s equation, freely using
the Newtonian equations to simplify the resulting expres-
sions. Equation (A2) yields

G0
0ðgÞ þ�� 8�T0

0

¼ 3

a2

�
� 2

3
@i@ic N � 8

3
c N@

i@ic N � @ic N@ic N

�

� 8��0f��N � ð1þ �NÞvi
NvNig þ oð1Þ

¼ 3

a2

�
� 8

3
c N@

i@ic N � @ic N@ic N

�

þ 8��0ð1þ �NÞvi
NvNi þ oð1Þ; (3.3)

where we used the Poisson Eq. (2.23) for c N in the second
equality. Since the quantities c N@

i@ic N , @
ic N@ic N and

�Nv
i
NvNi are each Oð1Þ in our counting scheme (and these

TABLE I. Small scale order counting for Newtonian quanti-
ties.

Quantity Order

c ðSÞ
N �

vðSÞi
N �1=2

�ðSÞ
N ��1

@0 ��1=2

@i ��1
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terms do not cancel), we see that this component of
Einstein’s equation is not satisfied to Oð1Þ.

Equation (A3) yields

G0
iðgÞ � 8�T0

i ¼
2

a2

�
�@i _c N � _a

a
@ic N

�

� 8��0½ð1þ �NÞvNi�js þ oð1Þ: (3.4)

However, from the Newtonian equations of motion (2.23)
and (2.24), it follows that

@i@i _c N þ _a

a
@i@ic N ¼ �4��0a

2@i½ð1þ �NÞvi
N�: (3.5)

On the torus this may be integrated, giving

@i _c N þ _a

a
@ic N ¼ �4��0a

2½ð1þ �NÞvNi�js: (3.6)

Thus, we obtain

G0
iðgÞ � 8�T0

i ¼ oð1Þ; (3.7)

i.e., these components of Einstein’s equation are satisfied13

to Oð1Þ.
Finally, from Eq. (A4) we obtain the space-space com-

ponents,

Gi
jðgÞ þ��i

j � 8�Ti
j

¼ 1

a2
f2 €c N � 4c N@

k@kc N � 3@kc N@
kc Ng�i

j

þ 1

a2
f4c N@

i@jc N þ 2@ic N@jc Ng

þ 1

2a2
f@i _Bj þ @j _B

ig
� 8��0ð1þ �NÞvi

NvNj þ oð1Þ: (3.8)

Thus, these components of Einstein’s equation are not
satisfied to Oð1Þ.

2. Corrections to the dictionary needed to solve Einstein’s
equation to Oð1Þ

We will now show that all components of Einstein’s
equation can be satisfied to Oð1Þ by making the additional
corrections 
, �, and |ij to the spacetime metric as

follows:

A ¼ c N þ 
þ �; (3.9)

HL ¼ �c N � 
; (3.10)

hij ¼ |ij (3.11)

with �ðSÞ, 
ðSÞ, and |ðSÞij allOð�2Þ. However, we do not make

any modifications to the original dictionary expressions for
vi, �, and Bi, i.e., we continue to use

ð1þ�NÞvi ¼ ð1þ�NÞðvi
N þBiÞ� ð1þ�NÞvi

Njv; (3.12)

� ¼ �N � 3

4��0a
2

��
_a

a

�
2
c N þ _a

a
_c N

�
; (3.13)

@j@jB
i ¼ �16��0a

2ðð1þ �NÞvi
N � ð1þ �NÞvi

NÞjv:
(3.14)

In particular, it should be emphasized that no additional
corrections are made to the matter distribution variables �
and vi.
We have already seen that the original dictionary solved

the time-space components of Einstein’s equation to Oð1Þ
and it is not difficult to see that these equations continue to
hold with the above revisions. Thus, to solve Einstein’s
equation to Oð1Þ, we need only consider the space-space
components (A4) and the time-time component (A2). To
solve (A4), we note that we can uniquely decompose any
symmetric tensor field Eij on a 3-torus with flat metric �ij

and flat derivative operator @i as

Eij ¼ U�ij þ @i@jV � 1
3@

k@kV þ 2@ðiWjÞ þ Xij; (3.15)

with @iWi ¼ 0, @iXij ¼ 0, and Xi
i ¼ 0. This defines the

decomposition of Eij into its scalar ðU;VÞ, vector (Wi), and

tensor (Xij) parts. Thus, we can solve an equation of the

form Eij ¼ 0 by separately solving its scalar, vector, and

tensor parts. To begin, we take the double divergence of the
traceless part of (A4). We obtain14

� 2

3a2
@i@i@

j@j�þ 1

a2
@i@

jf4c N@
i@jc N þ 2@ic N@jc Ng

� 1

3a2
@i@if4c N@

j@jc N þ 2@jc N@jc Ng
¼ 8��0@i@

j½ð1þ �NÞvi
NvNj�

� 8�

3
�0@

i@i½ð1þ �NÞvk
NvNk� þ o

�
1

�2

�
: (3.16)

Here we have dropped terms which are oð1=�2Þ, since we
have taken two spatial derivatives of an equation that we
wish to satisfy to Oð1Þ. We can solve (3.16) to the desired
order by defining � to be the solution to the following
double Poisson equation:

13In fact, the precise forms of (2.41) and (2.44) were chosen so
that no further corrections to vi and Bi would be needed to
satisfy Einstein’s equation to Oð1Þ.

14In substituting for vi we have neglected some terms propor-
tional to 1=ð1þ �NÞ, which can in fact be quite large in low
density regions. When one makes a uniform momentum correc-

tion�ð1þ �NÞvi
Njv, this corresponds, in a low density region, to

a very large velocity correction which is unphysical. If such a
situation were to occur, then a fix would be to transfer some of
this momentum to a higher density region.
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@i@i@
j@j� ¼ 3@i@

jf2c N@
i@jc N þ @ic N@jc Ng

� @i@if2c N@
j@jc N þ @jc N@jc Ng

� 12��0a
2@i@

j½ð1þ �NÞvi
NvNj�

þ 4��0a
2@i@i½ð1þ �NÞvk

NvNk�: (3.17)

A solution for � exists on a torus because the source term is
a divergence and therefore has no spatially constant piece.
This solution is unique up to a spatially constant function
of time, which we fix by requiring that its spatial average,
��, vanishes. Since the double divergence of the traceless
part of (A4) has now been solved to Oð1=�2Þ, the scalar
part of the traceless part of (A4) should now be solved to
Oð1Þ, as desired. Note that since the four spatial derivatives
applied to � yields a quantity that is Oð1=�2Þ, the short

wavelength part, �ðSÞ, of � should beOð�2Þ, so our assump-

tion that �ðSÞ is Oð�2Þ is self-consistent.
Next, we show that, with this choice of �, the trace of

(A4) also is satisfied to Oð1Þ. Substituting the revised
dictionary (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14)
into the trace of (A4), we find that we must satisfy

3

a2

�
2

3
@i@i�þ 2 €c N

�
þ 1

a2
f�8c N@

i@ic N � 7@ic N@
ic Ng

¼ 8��0ð1þ �NÞvi
NvNi þ oð1Þ: (3.18)

To see if this equation holds, we take its Laplacian. The
double Laplacian of � will then appear, and we can sub-
stitute for this quantity using (3.17). Since we want to solve
(3.18) to Oð1Þ, and each spatial derivative increases the
small scale order by a factor of 1=�, we wish to solve the
Laplacian of (3.18) to Oð1=�2Þ, so the equation we wish to
solve is

3

a2
f2@i@i €c N � 2@ið@ic N@

j@jc NÞg

¼ 24��0@
j@i½ð1þ �NÞvi

NvNj� þ o

�
1

�2

�
: (3.19)

However, using the Newtonian Eqs. (2.23), (2.24), and
(2.25), as well as the Friedmann equations for the
Newtonian background, one can show that

@i@i

�
2 €c N þ 6

_a

a
_c N þ

�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
c N

�

¼ 8��0a
2@i@j½ð1þ �NÞvi

Nv
j
N� þ 2@ið@j@jc N@

ic NÞ;
(3.20)

so (3.19) is indeed solved to the desired order. We have thus
fully solved the scalar parts of the space-space part of
Einstein’s equation to Oð1Þ.

Next, we consider the vector part of (A4) by taking its
divergence, using the fact that the scalar parts have already
been solved. We obtain

1

2a2
@j@j _B

i þ 1

a2
@jf4c N@

i@jc N þ 2@ic N@jc Ngjv

¼ 8��0@
j½ð1þ �NÞvi

NvNj�jv þ o

�
1

�

�
: (3.21)

Using the Newtonian Euler and mass conservation equa-
tions, along with the definition of Bi, one can show that

1

2a2

�
@j@j _B

i þ 2
_a

a
@j@jB

i

�

þ 1

a2
@jf4c N@

i@jc N þ 2@ic N@jc Ngjv
¼ 8��0@

j½ð1þ �NÞvi
NvNj�jv; (3.22)

so equality does hold for the terms explicitly written in
(3.21). Thus, the vector part of (A4) is satisfied to Oð1Þ.
The tensor part of (A4) is all that remains of this equa-

tion. We obtain

� 1

a2
@k@k|

i
j þ

1

a2
f4c N@

i@jc N þ 2@ic N@jc Ngjt
¼ 8��0ð1þ �NÞvi

NvNjjt þ oð1Þ; (3.23)

where jt denotes the tensor part of a quantity in its decom-
position (3.15). To solve this equation to the desired order,
we define |ij to be the solution of

@k@k|
i
j ¼ f8��0a

2ð1þ �NÞvi
NvNj þ 4c N@

i@jc N

þ 2@ic N@jc N � 8��0a
2ð1þ �NÞvi

NvNj

þ 2@ic N@jc Ngjt; (3.24)

where the overline denotes spatial average [see (2.45)]. The
terms with the overline in (3.24) have been added in so that
the source has vanishing integral, as is necessary in order to
be able to solve the Poisson equation. Since these terms
are15 Oð�Þ, we will satisfy (3.23) to the desired order by
choosing |ij to solve (3.24). We fix the ambiguity in |ij by

requiring �|ij ¼ 0. Since two spatial derivatives applied to

|ij yields a quantity that is Oð1Þ, the short wavelength part,
|ðSÞij , of |ij should be Oð�2Þ, so our assumption that |ðSÞij , is

Oð�2Þ is self-consistent. We have now solved (A4) toOð1Þ.
Finally, we consider the time-time component of

Einstein’s equation. Substitution of the dictionary into
(A2) yields

3

a2

�
� 2

3
@i@ic N � 2

3
@i@i
� 8

3
c N@

i@ic N � @ic N@ic N

�

¼ 8��0½��N � ð1þ �NÞvi
NvNi� þ oð1Þ: (3.25)

Using the Newtonian field Eq. (2.23), we obtain

15See footnote 12.
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3

a2

�
� 2

3
@i@i
� 8

3
c N@

i@ic N � @ic N@ic N

�

¼ �8��0ð1þ �NÞvi
NvNi þ oð1Þ: (3.26)

We define 
 to be the solution to the Poisson equation

@i@i
 ¼ �4c N@
i@ic N � 3

2
@ic N@ic N

þ 4�a2�0ð1þ �NÞvi
NvNi � 5

2
@ic N@ic N

� 4�a2�0ð1þ �NÞvi
NvNi; (3.27)

with 
 ¼ 0. Since two spatial derivatives applied to 

yields a quantity that is Oð1Þ, the short wavelength part,


ðSÞ, of 
 should be Oð�2Þ.
Thus, we have shown that Einstein’s equation can be

solved to Oð1Þ by making the corrections (3.9), (3.10), and
(3.11) to the original dictionary, where 
, �, and |ij are

given, respectively, by (3.27), (3.16), and (3.24). Although
it is extremely important as a matter of principle that such
corrections can be made so as to obtain a solution to Oð1Þ,
we expect that these corrections will be negligibly small
compared with c N .

B. Improving the solution to Oð�Þ at large scales
In the previous subsection we obtained a solution to

Oð1Þ. However, as previously stated, if our dictionary is
to be trusted for its description of large scale structure—
including on scales comparable to (or larger than) the
Hubble radius—we want Einstein’s equation to hold to at
least Oð�Þ at large scales. Within the context of ordinary
perturbation theory, this corresponds to solving the line-
arized perturbation equation. Within our generalized per-
turbative framework, this corresponds to solving the
generalized linearized perturbation Eq. (87) of [12]. The
difference between these, as noted earlier, is that long
wavelength averages of products of small scale quantities
enter into the generalized linearized equation.

It is easy to check that, even with the corrections (3.9),
(3.10), and (3.11), our dictionary does not produce a solu-
tion to Oð�Þ at long wavelengths. Therefore, we will need
to make the following additional long wavelength correc-
tions to our metric and matter variables:

A ¼ c N þ 
þ �þ Xþ�; (3.28)

HL ¼ �c N � 
� X; (3.29)

ð1þ �NÞvi ¼ ð1þ �NÞðvNi þ BiÞ � ð1þ �NÞvNijv þ Pi;

(3.30)

� ¼ �N � 3

4��0a
2

��
_a

a

�
2
c N þ _a

a
_c N

�
þ �; (3.31)

hij ¼ |ij þ Jij: (3.32)

No additional long wavelength correction is needed for Bi.
Here, the quantities �, X, Pi, �, and Jij are assumed to be

Oð�Þ and to have vanishing short wavelength part. Hence,
they do not contribute to Einstein’s equation to Oð1Þ and
thus do not spoil the solution obtained in the previous
subsection.
Our strategy is to apply the averaging operator h	i [see

Eq. (3.1)] to Einstein’s equation, and to choose the above
new correction terms in order to obtain a solution to Oð�Þ.
For our the calculations below, it is useful to note that the
averaging operator h	i commutes with differentiation. Note
also that since c N ¼ Oð�Þ, we clearly have hc 2

Ni ¼ Oð�2Þ,
and, consequently, we have

h@ic N@ic Ni þ hc N@
i@ic Ni ¼ 1

2@
i@ihc 2

Ni ¼ Oð�2Þ:
(3.33)

Thus, we may freely ‘‘integrate by parts’’ to set
hc N@

i@ic Ni ¼ �h@ic N@ic Ni in our calculations.
As before, we begin with the double divergence of the

trace-free part of the space-space components (A4) of
Einstein’s equation. Substituting our new dictionary
(3.28), (3.29), (3.30), (3.31), and (3.32), applying the aver-
aging operator h	i, and using the equation obtained by
applying the averaging operator to (3.17) to simplify the
resulting expression, we obtain

� 2

3a2
@i@i@

j@j� ¼ oð�Þ: (3.34)

Thus � can only have a spatially constant part, i.e.,

� ¼ �; (3.35)

where � may be an arbitrary function of �. Examining the
scalar homogeneous parts of the metric,

�ds2 ¼ a2ð�Þ½�ð1þ 2 �X þ 2�Þd�2 þ ð1� 2 �XÞ�ijdx
idxj�;
(3.36)

we see that � corresponds to gauge freedom in the choice
of time coordinate. We fix this freedom by setting

� ¼ �2 �X; (3.37)

corresponding to using conformal time.
Next, we consider the trace of (A4). Substituting from

the dictionary, applying h	i, and using � ¼ �2 �X, we
obtain

3

a2

�
2

3
@i@ih�i þ 2ðh €c Ni þ h €
i þ €XÞ þ 2

_a

a
ð3h _c Ni þ 3h _
i

þ 3 _X þ h _�i � 2 _�XÞ þ
�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
ðhc Ni þ h
i

þ Xþ h�i � 2 �XÞ
�
þ 1

a2
h@ic N@ic Ni

¼ 8��0hð1þ �NÞvi
NvNii þ oð�Þ: (3.38)
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As before, we take the Laplacian of this equation and
substitute the average of (3.17), obtaining

3

a2
@j@j

�
2ðh €c Ni þ h €
i þ €XÞ þ 2

_a

a
ð3h _c Ni þ 3h _
i þ 3 _X

þ h _�iÞ þ
�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
ðhc Ni þ h
i þ X þ h�iÞ

�

� 6

a2
@ih@ic N@

j@jc Ni
¼ 24��0@i@

jhð1þ �NÞvi
NvNji þ oð�Þ: (3.39)

Simplifying further using the average of (3.20) and then
inverting the Laplacian, we obtain

2 €X þ 6
_a

a
_X� 4

_a

a
_�X þ

�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
ðX� �XÞ

¼ �2h €
i � 6
_a

a
h _
i � 2

_a

a
h _�i

�
�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
ðh
i þ h�iÞ � 1

3
@ic N@ic N

þ 8��0a
2

3
ð1þ �NÞvi

NvNi þ oð�Þ: (3.40)

Here, the constant of integration was determined by requir-
ing consistency with (3.38). Thus, the trace of (A4) is
satisfied to Oð�Þ at long wavelengths provided that X
satisfies this second order ordinary differential equation
in time. The ‘‘scalar parts’’ of the long wavelength part of
(A4) have now been satisfied to Oð�Þ

Using (3.22), it is not difficult to see that the long
wavelength part of the divergence of (A4) is solved to
Oð�Þ at large scales, without any need for further correc-
tions. Thus, the ‘‘vector part’’ of (A4) has been satisfied to
the desired order at long wavelengths. Only the ‘‘tensor
part’’ of (A4) remains. Substituting the dictionary and
applying the averaging operator h	i, we obtain
1

a2

�
€Jij þ

_a

a
_Jij � @k@kJ

i
j

�

¼� 1

a2

�
h€|ijiþ

_a

a
h _|iji� @k@kh|iji

�
þ 2

a2
h@ic N@jc Nijt

þ 8��0hð1þ�NÞvi
NvNjijt þoð�Þ

¼� 1

a2

�
h€|ijiþ

_a

a
h _|iji

�
þ 2

a2
@ic N@jc Njt

þ 8��0ð1þ�NÞvi
NvNjjt þoð�Þ; (3.41)

where we used the average of (3.24) in the second equality.
Thus the tensor part of (A4) is solved toOð�Þ at large scales
provided that Jij solves this wave equation. This completes

the solution of the long wavelength part of (A4) to Oð�Þ.
Next, we consider (A3). Substituting from the dictio-

nary, applying h	i, and taking the divergence, we obtain

� 2

a2
@i@i

�
h _c Ni þ _X þ h _
i þ _a

a
ðhc Ni þ X þ h
i þ h�iÞ

�

¼ 8��0@
iðð1þ �NÞvNi þ PiÞ þ oð�Þ: (3.42)

Using the average of (3.5) to simplify this expression, we
obtain

� 2

a2
@i@i

�
_Xþh _
iþ _a

a
ðXþh
iþh�iÞ

�
¼8��0@

iPiþoð�Þ:
(3.43)

We solve this equation by setting Pi to be

Pi ¼ � 1

4��0a
2
@i
�
_X þ h _
i þ _a

a
ðX þ h
i þ h�iÞ

�
: (3.44)

This satisfies the ‘‘scalar part’’ of (A3) to the desired order
at long wavelengths. It is easy to check that the vector part
of (A3) is also satisfied without the need for any further
corrections.
Finally, we consider the remaining component of

Einstein’s equation, the time-time component (A2).
Substituting and averaging, we find that this equation is
satisfied to the required order by making the density cor-
rection

� ¼ �hð1þ �NÞvi
NvNii � 5

8�a2�0

h@ic N@ic Ni

� 3

8��0a
2

�
� 2

3
@i@iðXþ h
iÞ þ 2

_a

a
ð _X þ h _
iÞ

þ 2

�
_a

a

�
2ðX � 2 �X þ h
i þ h�iÞ

�

¼ �ð1þ �NÞvi
NvNi � 5

8�a2�0

@ic N@ic N

� 3

8��0a
2

�
� 2

3
@i@iX þ 2

_a

a
ð _Xþ h _
iÞ

þ 2

�
_a

a

�
2ðX � 2 �X þ h
i þ h�iÞ

�
: (3.45)

Here, the average of (3.27) was used to get the second line.
Einstein’s equation has now been fully solved to Oð1Þ

everywhere, and to Oð�Þ at large scales. All of the quanti-
ties appearing in our dictionary are uniquely determined by
the Newtonian solution, except for X and Jij, which obey

second order differential equations in time. The degrees of
freedom associated with X correspond to the long wave-
length degrees of freedom present in the dust matter sector
in ordinary linearized perturbation theory. It would be
natural to fix X by requiring that � and Pi vanish at an
initial time.16 The degrees of freedom associated with Jij

16Since �Pi vanishes identically, this does not fix the spatially
homogeneous part, �X, of X. An additional condition on �X will be
imposed in Appendix B
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correspond to the presence of long wavelength gravita-
tional radiation.

Finally, we consider the magnitude of the additional
long wavelength quantities � ¼ �2 �X, X, Pi, �, and Jij
that we have just obtained. The equations for these quan-
tities involve terms of the form h@ic N@jc Ni and

hð1þ �NÞvNivNji as well as h�i, h
i, and h|iji, which

themselves are sourced by terms of the form
h@ic N@jc Ni and hð1þ �NÞvNivNji. Thus, the additional

long wavelength quantities appearing in our new dictionary
(3.28), (3.29), (3.30), (3.31), (3.31), and (3.32) should have
a magnitude of the order of the Newtonian potential energy
and kinetic energy of the dust matter. Although very small,
the homogeneous (i.e., spatially constant) part of these
quantities provides the dominant correction to the back-
ground FLRW dust cosmology. We compute these correc-
tions explicitly in Appendix B. However, the long
wavelength corrections at finite wavelength are sourced
by large scale inhomogeneities in h@ic N@jc Ni and

hð1þ �NÞvNivNji. These terms should be extremely small

as compared with, say, h�Ni. Thus, the long wavelength
corrections we have obtained in this subsection should
make entirely negligible contributions to Newtonian large
scale structure.

IV. SUMMARY

Combining all of the results of the previous section, we
have the following Oxford dictionary for translating a
Newtonian cosmological solution ðc N; v

i
N; �NÞ to a gen-

eral relativistic spacetime metric (2.36) and dust stress-
energy (2.37):

A ¼ c N þ 
þ �þ X � 2 �X; (4.1)

HL ¼ �c N � 
� X; (4.2)

ð1þ �NÞvi ¼ ð1þ �NÞðvNi þ BiÞ � ð1þ �NÞvNijv þ Pi;

(4.3)

� ¼ �N � 3

4��0a
2

��
_a

a

�
2
c N þ _a

a
_c N

�
þ �; (4.4)

hij ¼ |ij þ Jij: (4.5)

Here, the quantities Bi, �, 
, |ij, P
i, and � are given by

@j@jB
i ¼ �16��0a

2ðð1þ �NÞvi
N � ð1þ �NÞvi

NÞjv;
(4.6)

@i@i@
j@j� ¼ 3@i@

jf2c N@
i@jc N þ @ic N@jc Ng

� @i@if2c N@
j@jc N þ @jc N@jc Ng

� 12��0a
2@i@

j½ð1þ �NÞvi
NvNj�

þ 4��0a
2@i@i½ð1þ �NÞvk

NvNk�; (4.7)

@i@i
 ¼ �4c N@
i@ic N � 3

2
@ic N@ic N

þ 4�a2�0ð1þ �NÞvi
NvNi � 5

2
@ic N@ic N

� 4�a2�0ð1þ �NÞvi
NvNi; (4.8)

@k@k|
i
j ¼ f8��0a

2ð1þ �NÞvi
NvNj

þ 4c N@
i@jc N þ 2@ic N@jc N

� 8��0a
2ð1þ �NÞvi

NvNj þ 2@ic N@jc Ngjt;
(4.9)

Pi ¼ � 1

4��0a
2
@i
�
_Xþ h _
i þ _a

a
ðX þ h
i þ h�iÞ

�
;

(4.10)

� ¼ �ð1þ �NÞvi
NvNi � 5

8�a2�0

@ic N@ic N

� 3

8��0a
2

�
� 2

3
@i@iX þ 2

_a

a
ð _Xþ h _
iÞ

þ 2

�
_a

a

�
2ðX � 2 �X þ h
i þ h�iÞ

�
; (4.11)

with �Bi ¼ �� ¼ �
 ¼ �|ij ¼ 0. The quantities Jij and X sat-

isfy the differential equations

1

a2
f €Jij þ

_a

a
_Jij � @k@kJ

i
jg ¼ � 1

a2

�
h€|iji þ

_a

a
h _|iji

�

þ 2

a2
@ic N@jc Njt

þ 8��0ð1þ �NÞvi
NvNjjt:

(4.12)

and

2 €X þ 6
_a

a
_X � 4

_a

a
_�Xþ

�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
ðX � �XÞ

¼ �2h €
i � 6
_a

a
h _
i � 2

_a

a
h _�i �

�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
ðh
i

þ h�iÞ � 1

3
@ic N@ic N þ 8��0a

2

3
ð1þ �NÞvi

NvNi:

(4.13)

Like the Oxford English Dictionary, the above dictionary
should be far more detailed and precise than needed for
everyday use. Nevertheless, it may be comforting to have it
on one’s bookshelf in case the need does arise.
Furthermore, as a matter of principle, it is of importance
to know that a dictionary of this accuracy—namely, solv-
ing Einstein’s equation toOð1Þ on all scales and toOð�Þ on
large scales—can be constructed without running into
inconsistencies.
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Our main purpose in obtaining the complete dictionary
(4.1), (4.2), (4.3), (4.4), and (4.5) was to evaluate the
accuracy of the original dictionary (2.40), (2.41), (2.42),
(2.43), and (2.44) [as well as its abridgement (2.46), (2.47),
and (2.48) and simplification (2.49), (2.50), and (2.51)]. We
have argued that for a Newtonian cosmology that satisfies
c N � 1 and jvi

Nj � 1 but may have �N � 1 at small
scales, all of the additional terms appearing in (4.1), (4.2),
(4.3), (4.4), and (4.5) as compared with (2.40), (2.41),
(2.42), (2.43), and (2.44) should be negligibly small.
Whether or not this is actually the case for any given
Newtonian cosmology can be determined by computing
the quantities �, 
, |ij, Pi, �, X, and Jij given by

(4.7), (4.8), (4.9), (4.10), (4.11), (4.12), and (4.13). If these
quantities are indeed negligibly small, then one can have
confidence that the Newtonian cosmology is accurately
representing a general relativistic spacetime via the origi-
nal dictionary (2.40), (2.41), (2.42), (2.43), and (2.44). If, in
addition, Bi is negligibly small [see (4.6)], then one is
similarly justified in using the abridged dictionary (2.46),
(2.47), and (2.48). These statements remain valid even in
cases where the Newtonian cosmology is describing phe-
nomena on scales comparable to or larger than the Hubble
radius.
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APPENDIX A: EINSTEIN’S EQUATION

For the metric ansatz (2.36), we write down the various
components of the perturbed Einstein equation,

G�
�ðgÞ �G�

�ðgð0ÞÞ ¼ 8�ðT�
� � Tð0Þ�

�Þ; (A1)

keeping all terms which are Oð1Þ at small scales or Oð�Þ at
large scales in our counting scheme. We introduce the
notation oð1; �Þ to denote a quantity which is oð1Þ at small
scales and oð�Þ at large scales. The �

� ¼ 0
0 equation reads

3

a2

�
�2

_a

a
_HL þ 2

3
@i@iHL þ 2

�
_a

a

�
2
A� 8

3
HL@

i@iHL

� @iHL@
iHL

�

¼ 8��0f��� ð1þ �Þviðvi � BiÞg þ oð1; �Þ;
(A2)

the �
� ¼ 0

j equation is

2

a2

�
@i _HL � _a

a
@iA

�
� 1

2a2
@j@jBi

¼ 8��0ð1þ �Þðvi � BiÞ þ oð1; �Þ; (A3)

and the �
� ¼ i

j equation is

1

a2

�
@k@kðHLþAÞ�2 €HL�4

_a

a
_HLþ2

_a

a
_Aþ4@�

�
_a

a

�
A

þ2

�
_a

a

�
2
A

�
�i

jþ
1

a2
f�4HL@

k@kHL�2A@k@kA

�2HL@
k@kA�2@kHL@

kHL�@kA@
kAg�i

j

� 1

a2
@i@jðHLþAÞþ 1

a2
f4HL@

i@jHLþ2HL@
i@jA

þ2A@i@jAþ@iA@jAþ@iA@jHLþ@iHL@jA

þ3@iHL@jHLgþ 1

2a2

�
@i _Bjþ@j _B

iþ2
_a

a
@iBjþ2

_a

a
@jB

i

�

þ 1

a2

�
€hijþ2

_a

a
_hij�@k@kh

i
j

�

¼8��0ð1þ�Þviðvj�BjÞþoð1;�Þ: (A4)

APPENDIX B: MODIFIED BACKGROUND
METRIC

In this Appendix we compute the homogeneous parts of
the metric and matter distribution as given by our final
dictionary (4.1), (4.2), (4.3), (4.4), and (4.5). These can be
viewed as providing the dominant corrections to the back-
ground cosmology produced by small scale inhomogene-
ities. The relevant equations can be obtained by taking
spatial integrals of the equations of Sec. IV. We find that
the spatially homogeneous parts of the metric components
are given by

�A ¼ � �X; (B1)

�H L ¼ � �X; (B2)

�h ij ¼ �Jij; (B3)

as well as �Bi ¼ 0 (see footnote 5). Thus, the homogeneous
part of the metric takes the form

ds2 ¼ a2ð�Þ½�ð1� 2 �XÞd�2 þ ðð1� 2 �XÞ�ij þ �JijÞdxidxj�:
(B4)

We also have

�� ¼ ��; (B5)

�P i ¼ 0; (B6)

and

ð1þ �Þðvi � BiÞ ¼ 0: (B7)

In addition, the quantities �X, ��, and �Jij satisfy

2 €�X þ 2
_a

a
_�X �

�
4@�

�
_a

a

�
þ 2

�
_a

a

�
2
�
�X

¼ � 1

3
@ic N@ic N þ 8�

3
a2�0ð1þ �NÞvi

NvNi; (B8)
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�� ¼ �ð1þ �NÞvi
NvNi � 5

8�a2�0

@ic N@ic N

� 3

8��0a
2

�
2
_a

a
_�X� 2

�
_a

a

�
2
�X

�
; (B9)

and

1

a2

�
€�J
i
jþ _a

a
_�J
i
j

�
¼
�
2

a2
@ic N@jc Nþ8��0ð1þ�NÞvi

NvNj

���������t
:

(B10)

It is clear that the metric perturbation given by �X can be
interpreted as taking one to a new FLRW spacetime, with
scale factor

âð�Þ ¼ að�Þð1� �XÞ: (B11)

We now derive modified Friedmann equations for â. To
linear order in barred quantities, we have

1

â

dâ

d�
¼ 1

a

da

d�
� _�X; (B12)

so�
1

â

dâ

d�

�
2 ¼

�
1

a

da

d�

�
2 � 2

_a

a
_�X

¼ 8��0â
2

3
ð1þ ��þ ð1þ �NÞvi

NvNiÞ

þ 5

3
@ic N@ic N þ�â2

3
: (B13)

Here, we made use of the Friedmann equation for a as well
as Eq. (B9). Similarly, we have

d

d�

�
1

â

dâ

d�

�
¼ d

d�

�
1

a

da

d�

�
� €�X

¼ � 4��0â
2

3
ð1þ ��þ 2ð1þ �NÞvi

NvNiÞ

� 2

3
@ic N@ic N þ�â2

3
: (B14)

To put these equations in a more recognizable form, we
note that for dust matter, rað�uaÞ ¼ 0, so the integrated
flux of �ua over a Cauchy surface �,

N ¼ �
Z
�
�ud�dabc; (B15)

is a constant, i.e., independent of �.N is often referred to
as the ‘‘total number of baryons;’’ in an N-body simula-
tion, it would correspond to the total number of particles in
the simulation. Evaluating the right side of (B15), we
obtain

N ¼ �0a
3

�
1þ ��þ 1

2
ð1þ �NÞvi

NvNi

þ 3

4��0a
2
@ic N@ic N � 3 �X

�
: (B16)

It is natural to use our freedom in choosing initial con-
ditions for a solution to (B8) to requireN ¼ N 0 ¼ �0a

3,
so that the total number of particles is the same as in the
background spacetime. This condition yields

�� ¼ � 1

2
ð1þ �NÞvi

NvNi � 3

4��0a
2
@ic N@ic N þ 3 �X:

(B17)

Combining this equation with (B9), we obtain

0 ¼ � 1

2
ð1þ �NÞvi

NvNi þ 1

8�a2�0

@ic N@ic N � 3 �X

� 3

8�a2�0

�
2
_a

a
_�X � 2

�
_a

a

�
2
�X

�
; (B18)

whose time derivative is (B8).
We define the average particle number density �̂ relative

to â by

�̂â3 ¼ N ¼ N 0 ¼ �0a
3: (B19)

In terms of �̂, the Friedmann equations become

�
1

â

dâ

d�

�
2 ¼ 8��̂â2

3

�
1þ 1

2
ð1þ �NÞvi

NvNi

� 1

8��̂â2
@ic N@ic N

�
þ�â2

3
; (B20)

d

d�

�
1

â

dâ

d�

�
¼ � 4��̂â2

3

�
1þ 3

2
ð1þ �NÞvi

NvNi

� 1

4��̂â2
@ic N@ic N

�
þ�â2

3
: (B21)

From these equations, one can read off the effective energy
density and pressure, including the contributions from
small scale inhomogeneities,

�eff ¼ �̂

�
1þ 1

2
ð1þ �NÞvi

NvNi � 1

8��̂â2
@ic N@ic N

�
;

(B22)

Peff ¼ �̂

�
1

3
ð1þ �NÞvi

NvNi � 1

24��̂â2
@ic N@ic N

�
:

(B23)

The correction terms in �eff correspond precisely to aver-
aged gravitational potential energy and kinetic energy, as
expected [9,12,13]. They can be interpreted as renormaliz-
ing the proper mass density �̂ to an ‘‘ADM mass density’’
�eff . For virialized systems, the correction terms in Peff

cancel, as pointed out in [13]. Thus, we see that the

corrections resulting from �X and �� correspond to modify-
ing the FLRW background to a new FLRW spacetime with
small corrections to the average effective mass density and
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pressure that arise from small scale Newtonian gravita-
tional potential energy and stresses as well as small scale
kinetic motions.

The remaining corrections due to �Jij perturb one to an

anisotropically expanding Bianchi model. It can be seen

from (B10) that anisotropies in the spatial average of the
Newtonian stresses and/or kinetic motions must neces-
sarily induce an anisotropic expansion of the universe.
However, we would expect these effects to be extremely
small.
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