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1Department of Physics, University of Ottawa,

75 Laurier Avenue East, Ottawa, Ontario K1N 6N5, Canada
2Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, 14476 Potsdam, Germany
3Enrico Fermi Institute and Kavli Institute for Cosmological Physics, The University of Chicago,

5640 South Ellis Avenue, Chicago, Illinois 60637, USA
4Perimeter Institute for Theoretical Physics,

31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

(Received 19 November 2017; published 29 March 2018)

Observations of gravitational waves from inspiralling neutron star binaries—such as GW170817—can
be used to constrain the nuclear equation of state by placing bounds on stellar tidal deformability. For
slowly rotating neutron stars, the response to a weak quadrupolar tidal field is characterized by four
internal-structure-dependent constants called “Love numbers.” The tidal Love numbers kel2 and kmag

2

measure the tides raised by the gravitoelectric and gravitomagnetic components of the applied field, and the
rotational-tidal Love numbers fo and ko measure those raised by couplings between the applied field and
the neutron star spin. In this work, we compute these four Love numbers for perfect fluid neutron stars
with realistic equations of state. We discover (nearly) equation-of-state independent relations between the
rotational-tidal Love numbers and the moment of inertia, thereby extending the scope of I-Love-Q
universality. We find that similar relations hold among the tidal and rotational-tidal Love numbers.
These relations extend the applications of I-Love universality in gravitational-wave astronomy. As our
findings differ from those reported in the literature, we derive general formulas for the rotational-tidal Love
numbers in post-Newtonian theory and confirm numerically that they agree with our general-relativistic
computations in the weak-field limit.
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I. INTRODUCTION

The Advanced LIGO and Virgo gravitational-wave
observatories have recently detected the inspiral and merger
of two low-mass compact objects consistent with neutron
stars (NSs) [1]. With three operating detectors and the
simultaneous observation of a gamma-ray burst, it was
possible to localize the event in the sky and perform follow-
up observations of electromagnetic counterparts. Together,
these exciting observations have provided a host of insights
into neutron star physics, gamma-ray bursts, kilonovae, and
even cosmology.
The inspiral stage of the binary NS merger, seen only by

the gravitational wave detectors, can provide insight into
the internal structure and composition of the NSs through
their tidal deformability. As the stars inspiral, they exert
tidal forces on each other, resulting in deformed stars. This
affects the orbital dynamics of the binary, and slightly

accelerates the coalescence [2–4]. Indeed, through non-
observation of an unambiguous tidal phase shift, Ref. [1]
placed bounds on the tidal deformability of the stars and
thereby constrained competing nuclear physics models of
the NS interior.
Cold NS matter is described as a barotropic perfect

fluid with a particular equation of state (EoS) determined
by the underlying nuclear physics model. In recent years,
much effort has been devoted to describing the tidal
deformability of compact objects in general relativity,
including NSs, as a function of their EoS [5–10]. The
main result of this program is that for weak and slowly
varying tides the dependence on the EoS is captured by a
set of constants called “Love numbers.” The Love numbers
relate the induced field of the tidally deformed body to the
applied tidal field.
The analysis of Ref. [1] constrained only the leading-

order tides raised by the presence of the binary companion,
but as detector sensitivity is improved it will become
important to have waveform predictions that also take into
account tides raised by the orbital motion of the
companion, as well as interactions between tidal fields
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and NS spin. The main purpose of this work is to compute
and study the Love numbers associated with this rotational-
tidal response for slowly rotating NSs with realistic EoSs.
Our main result is to show that existing universal relations
between NS observables can be extended to include these
Love numbers. These relations could be helpful for
modeling and measuring spin corrections to tidal effects
in the waveform, although the computation of such
corrections is beyond the scope of this work.
In general relativity, the applied tidal field is described

by two sets of symmetric-tracefree (STF) tensors
[11], the gravitoelectric and gravitomagnetic multipole
moments fELgl≥2 and fBLgl≥2, where L ¼ a1a2…al is
a spatial multi-index. These tidal moments are assumed
to be sourced by an external mass and momentum
distribution, such as a binary companion. At the linear
level, neglecting the spin of the body, an l-pole gravito-
electric tidal field will induce as a tidal response a mass
moment kellR

2lþ1EL=G, while an l-pole gravitomagnetic
tidal field will induce a current moment kmag

l MR2lBL=c2

(modulo normalizations), where M and R are the mass
and radius of the body. We refer to kell and kmag

l as the
gravitoelectric and gravitomagnetic tidal Love numbers.
The gravitoelectric tidal Love numbers reduce to the
Love numbers of Newtonian theory in the weak-field
limit, while the gravitomagnetic tidal Love numbers arise
only in general relativity. Together, they provide a
complete description of the deformation of a nonrotating
body subject to a weak, slowly varying tidal field. The
tidal Love numbers have been calculated for a variety of
configurations, including polytropes [5–8,10], NSs with
realistic EoSs [12–16] and quark stars [17,18], and
they have been shown to vanish identically for black
holes [8]. Several works have studied their impact on
binary NS waveforms, showing a slight speed-up in the
merger [12–16,19–24].
Neutron stars in binaries generically have nonzero spin

Sa. This couples nonlinearly to the applied tidal field to
generate additional corrections to the gravitational-wave
phase. Observations indicate, however, that the dimension-
less spin χa ≡ cSa=GM2 is small—jχaj≲ 0.05 [25]—so
the effect is likely to be suppressed relative to the leading-
order pure tidal deformation [26]. Assuming low spin and
rigid rotation, the leading-order rotational-tidal couplings
are proportional to χaEL and χaBL. These couplings
combine the dipole spin vector with an l-pole tidal
moment, generating bilinear moments of multipole orders
l − 1 ≤ l0 ≤ lþ 1. Just as a tidal Love number measures
the amplitude of the gravitational field induced by a given
tidal moment, a rotational-tidal Love number measures the
field induced by a bilinear moment.
In this paper, we restrict to quadrupolar applied tides.

While spin couplings with the tidal quadrupole moments
generate l ¼ 1, 2, 3 bilinear moments, the rotational-tidal
response is in fact fully characterized by two octupole

rotational-tidal Love numbers, fo (gravitoelectric).1 and ko

(gravitomagnetic). Indeed, there are no l ¼ 1 Love num-
bers, as a dipole deformation represents an overall accel-
eration of the body, which can be eliminated by switching
to its center-of-mass frame. Moreover, the l ¼ 2 Love
numbers identified in Refs. [27–29] can be eliminated by
transforming to a suitably rotated frame, as we show in
Appendix C. Thus, the response of a rotating body to
quadrupolar tides is characterized by the four Love num-
bers fkel2 ; kmag

2 ; fo; kog. These vanish for black holes [27],
while for material bodies they depend on the EoS.
Throughout this paper we will also use versions of the
Love numbers scaled by powers of stellar compactness
GM=c2R. These will be denoted by uppercase letters
Kel

2 ≡ ðc2R=2GMÞ5kel2 , Fo ≡ −ðc2R=2GMÞ5fo, Kmag
2 ≡

ðc2R=2GMÞ4kmag
2 , andKo ≡ −ðc2R=2GMÞ5ko. The scaled

Love numbers are the quantities that enter into the
universality relations [30], whereas the genuine Love
numbers remain finite and nonzero in the zero-compactness
limit, GM=c2R → 0 [27].
Section II is devoted to justifying our restriction to

quadrupolar applied tides. We show how the various tidal
fields and Love numbers appear in the metric and we
identify some of their physical effects. Supposing the tidal
fields are sourced by a binary companion, we estimate the
size of each term, and we argue that higher multipole terms
make a smaller contribution to the metric. We note,
however, that the higher-l terms could still contribute
significantly to the waveform itself, and this should be
investigated in future work.
A complete analysis of the deformation of a slowly

rotating body subject to a quadrupolar tidal field was carried
out by Landry and Poisson [27–29,31], and separately by
Pani, Gualtieri, Maselli and Ferrari [26,32], who also
investigated the effect of an octupolar tidal field and worked
to second order in spin. The two frameworks differ primarily
in their assumptions about the fluid state: Pani, Gualtieri
and Ferrari hold the fluid completely static [26], while
Landry and Poisson allow it to develop tidal currents [10] in
accordance with the circulation theorem of relativistic
hydrodynamics [33]. Because these fluid motions are
vorticity-free in a nonrotating star, the latter state has been
termed irrotational. The static state is incompatible with the
Einstein equation except in axisymmetry [29]. In this work,
we follow the framework of Landry and Poisson, which we
review in Sec. III.
In Sec. IV, we compute the four Love numbers for

polytropes and an incompressible fluid, and we confirm
that they agree with results of independent post-Newtonian
calculations in the zero-compactness limit. We find that our

1Note that we redefine this scaled Love number relative to
Landry and Poisson [27,28]: fo½here�≡ fo½LP� þ 5

3
kel2 (see

Sec. III F). Our new definition coincides with that of Ref. [26]
up to an overall scale.
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results do not match those of Ref. [26], even in the regime
where we expect fluid state differences to be insignificant.
In particular, we observe no evidence of a sign change
of Fo (their δλ̃32M ) at high compactness [26]. The n ¼ 1
polytrope results presented in Ref. [26] are also incom-
patible with our independent post-Newtonian calculation.
The octupole rotational-tidal Love numbers have been

calculated for polytropes by Landry [28], and for realistic-
EoS NSs in the static fluid state by Pani, Gualtieri and
Ferrari [26]. In Sec. V, we perform the first-ever compu-
tation of fo and ko for realistic NSs in the irrotational
state. The EoSs we adopt are piecewise polytropic fits to a
subset of the candidate EoSs considered in Ref. [34]. Our
models are chosen to be compatible with the maximum
observed NS mass of approximately 2 M⊙ [35,36], and
they also respect the causal bound on the sound speed. We
find that these realistic EoSs have Love numbers that lie
between those of the n ¼ 0.5 and n ¼ 1 polytropes, and we
observe a qualitative difference between npeμ and exotic-
matter EoSs.
One remarkable property of NSs is the existence of

approximately EoS-independent relations between three
macroscopic quantities: the moment of inertia I, the scaled
Love numberKel

2 , and the rotational quadrupole momentQ.
Although each quantity depends on the EoS in a separate
way, Yagi and Yunes [30] discovered empirical functional
relationships between them that are almost completely
insensitive to the EoS. The origin of this I-Love-Q
universality is not entirely understood, although it has
been linked to the emergence of isodensity contour self-
similarity in compact stars [37]. I-Love-Q relations have
important applications in gravitational-wave astronomy.
They imply that a precise measurement of one element
of the triad is sufficient to determine the other two with
percent-level accuracy. This can break the degeneracy
between spin-spin interaction and rotational quadrupole
contributions to the phasing of NS binary waveforms; an
independent measurement of Kel

2 could permit the extrac-
tion of the individual NS spins [38]. Universal relations
also have applications in parameter estimation and strong-
field tests of general relativity [39]. Recent work has
revealed that similar EoS-independent relations exist
between the scaled gravitomagnetic and gravitoelectric
tidal Love numbers [40], between the moment of inertia
and the scaled gravitomagnetic tidal Love number Kmag

2

[41], and between the scaled tidal Love numbers of two
NSs in a binary system [42,43], among other combinations
(see Ref. [39] for a review).
In Sec. VI, we extend I-Love universality to include the

scaled rotational-tidal Love numbers. We show that these
extended I-Love relations hold to within 2.5% accuracy.
This contrasts with Ref. [26], which found deviations from
universality of up to 200%. Extended I-Love universality
also suggests the existence of universal relations among the
scaled Love numbers. We confirm explicitly that these

Love-Love relations hold between each pair of the four
scaled Love numbers we study. Our findings provide
further evidence that NSs can be characterized in an
approximate way by a single number (beyond the mass
and the spin) that determines their internal-structure de-
pendent properties.
We also include several appendixes. Appendix A

describes our calculations of Love numbers in the post-
Newtonian approximation. While general post-Newtonian
formulas for the tidal Love numbers are known in the
literature [10], only partial results exist for the rotational-
tidal Love numbers; here, we derive expressions for fo and
ko that are valid for any barotropic EoS. In Appendix B, we
adapt the recipe presented in Sec. III to treat an incom-
pressible fluid, which is a limiting case in terms of stiffness
of the EoS. In Appendix C, we show that the aforemen-
tioned quadrupole rotational-tidal Love numbers are spu-
rious, and in Appendix D, we derive the mapping between
our Love numbers and those of Ref. [26].
Throughout this manuscript, lower case latin indices

a; b; c;… denote spatial components, and are raised
and lowered with the Euclidean metric δab. Uppercase
latin indices A;B; C;… denote angles θA ≡ ðθ;ϕÞ, and
are raised and lowered with the S2 metric SAB≡
diagð1; sin2 θÞ. Greek indices represent spacetime compo-
nents. With the exception of Secs. I, II and Appendix A, we
work in geometrized units G ¼ c ¼ 1.

II. TIDAL SCALES

The rotational-tidal couplings we study in this paper are
generated by the quadrupole moments Eab, Bab of the tidal
field. We work to first order in χa, Eab and Bab, and we also
treat the second order bilinear terms χaEbc and χaBbc. We
claim that the bilinear octupole deformations associated
with χaEbc and χaBbc represent important subleading
corrections to the leading-order tides raised directly by
the gravitoelectric quadrupole moment Eab. To justify this,
in this section we describe the various scales of the
problem, and we determine the relative sizes of the
deformations induced by the tidal field.
We consider a body of mass M, radius R and

dimensionless spin angular momentum χ ≡ jχaj ≪ 1 in
a vacuum region of spacetime pervaded by the tidal
influence of distant mass and momentum distributions.
We imagine that these distributions are sourced by a
binary companion of mass Mtid at a separation of b ≫ R.
(Alternately, Mtid and b can be interpreted as generic
mass and distance scales for the tidal source.) To leading
order, the companion generates quadrupolar tidal fields
Eab, Bab. These appear in the spacetime metric with the
scalings [44]

r2Eab

c2
∼
GMtid

c2b

�
r
b

�
2

;
r2Bab

c3
∼
GMtid

c2b

�
v
c

��
r
b

�
2

; ð1Þ
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where r measures distance from the body’s center of
mass, r ≪ b in the neighborhood of the body and v ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þMtidÞ=b

p
is a velocity scale for the companion’s

orbital motion. We neglect the higher multipoles of the
tidal field, such as the tidal octupole moments Eabc, Babc,
because they are suppressed by (r=b) relative to the tidal
quadrupole moments.
The couplings between χa and the tidal quadrupole

moments produce terms of the form χaEbc, χaBbc in the
metric; they are suppressed by a factor of χ relative to those
in Eq. (1). When χ ≫ r=b, these bilinear terms dominate
over the octupole tidal terms. In this case, the further
assumption that r ∼GðM þMtidÞ=c2 in the neighborhood

of the body implies that the dimensionless spin satisfies
v2=c2 ≪ χ ≪ 1. This condition is naturally fulfilled when
the binary separation is large and the component masses are
broadly comparable. (If χ < v2=c2, the bilinear terms are
negligible and the tidal octupole terms are the important
subleading corrections.)
By examining the form of the metric far from the tidally

perturbed, slowly rotating body, we can determine the
relative sizes of the deformations associated with each of
the tidal and bilinear moments. The generic external metric
Ansatz was constructed by Landry and Poisson [27,28]. In
an expansion in powers of GM=c2r, the time-time and
time-angle components of the metric are

gtt ¼ −1þ 2GM
c2r

−
�
1þ � � � þ 2kel2

�
R
r

�
5

ð1þ � � �Þ
�
Eabxaxb

c2
þ 2GM

c2
ð1þ � � �Þ χ

bBabxa

c3

−
2GM
c2r2

�
GM
c2r

þ � � � þ 2ko
�
R
r

�
5

ð1þ � � �Þ
�
χhaBbcixaxbxc

c3
; ð2aÞ

gtA ¼ 2G2M2

c4r3
ϵabcxbχcxaA þ 2

3

�
1þ � � � − 6

�
GM
c2r

�
kmag
2

�
R
r

�
4

ð1þ � � �Þ
�
ϵacdxcBd

bxbxaA
c3

−
2G2M2

c4r
ð1þ � � �Þ ϵabcx

bEc
dχ

dxaA
c2

−
10GM
3c2r2

�
G2M2

c4r
þ � � � þ 6

5
fo
�
R
r

�
5

ð1þ � � �Þ
�
ϵac

dxcEhdbχeixbxexaA
c2

: ð2bÞ

in the Regge-Wheeler gauge and Boyer-Lindquist
ðt; r; θ;ϕÞ coordinates. Here, ellipses denote relativistic
corrections of order GM=c2r and higher, xa are Cartesian
mass-centered coordinates, xaA ≡ ∂xa=∂θA are their angular
derivatives, and ϵabc is the antisymmetric permutation
symbol.
In gtt, the set of terms proportional to Eabxaxb describes a

quadrupole deformation of the spacetime. The leading term
in square brackets represents the applied gravitoelectric
field, while the decaying term proportional to the Love
number kel2 is the tidal response. This deformation is a
Newtonian effect at leading order, as indicated by the factor
of c−2. The tt component also contains a dipole deforma-
tion resulting from the coupling of the body’s spin to the
gravitomagnetic part of the tidal field; this is an overall
acceleration of the body due to the Mathisson-Papapetrou
spin force [45–47], which enters as an order 1.5 post-
Newtonian (1.5PN) correction by virtue of the factor of c−5

[27]. The last set of terms in gtt, proportional to
χhaBbcixaxbxc, describes the octupole deformation of the
spacetime due to another coupling of χa and Bab. The
decaying piece of this solution—the tidal response—
involves the rotational-tidal Love number ko. This octupole
deformation is a 1.5PN effect which is suppressed relative
to the deformation associated with kel2 by a factor of
χðv=cÞGM=c2r.

Turning to the tA component of the metric, the terms
proportional to ϵacdxcBd

bxb represent a gravitomagnetic
quadrupole deformation of the spacetime. The gravitomag-
netic field is itself a 1PN phenomenon (as indicated by the
c−3 scaling in this time-space component), but the tidal
response measured by kmag

2 is suppressed by an additional
factor ofGM=c2r in the metric. The deformation associated
with kmag

2 is therefore a 2PN effect, smaller than the
gravitoelectric quadrupole deformation by a factor of
ðv=cÞGM=c2r. The set of terms proportional to
ϵac

dxcEhdbχeixbxe in gtA corresponds to an octupole defor-
mation generated by the coupling of the spin to the external
gravitoelectric field; it enters at 1.5PN and is suppressed by
χGM=c2r relative to the deformation associated with kel2 .
The amplitude of the decaying, tidal-response piece in
square brackets is determined by fo. The tA component also
contains a term proportional to ϵabcxbχc describing the
body’s rotation, as well as a 2.5PN dipole deformation
proportional to ϵabcxbEc

dχ
d due to another spin force.

The structure of the metric allows us to remark on the
expected scaling of the bilinear quadrupole deformations
that would have been induced by couplings between χa and
Eabc, Babc, had we included the tidal octupole moments in
our description. Because such bilinear terms are generated
via octupole (rather than quadrupole) couplings, they will
be suppressed relative to their counterparts in Eq. (2) by a
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factor of r=b, although they are of the same post-
Newtonian order (1.5PN).
On the basis of these scalings, we conclude that the most

important corrections to the leading-order tides measured
by kel2 come from the deformations associated with kmag

2 and
fo. They are smaller than the quadrupole induced by Eab by
factors of ðv=cÞðGM=c2rÞ and χðGM=c2rÞ, respectively.
Although χ ≫ v2=c2, the comparison of χ and v=c is
ambiguous, and depends on the parameters of the binary.
Very early during binary inspiral,

v
c
∼
½GðMþMtidÞfGW�1=3

c
≈0.06

�
MþMtid

2M⊙

�
1=3
�
fGW
25Hz

�
1=3
;

ð3Þ

where fGW is twice the orbital frequency; for a lightweight
binary of total mass ∼2 M⊙, this is comparable to the
maximum known spin for a NS in a binary that merges
within the Hubble time, χ ≈ 0.05 [25]. Hence, the defor-
mations produced by rotational-tidal couplings can be just
as large as the tides due to gravitomagnetism.
We remark that the preceding discussion does not

mean that kmag
2 and fo necessarily make the largest con-

tributions (after kel2 ) to the gravitational-wave tidal phase.
Determining the precise corrections the rotational-tidal
Love numbers make to the tidal phasing of the binary
NS waveform is beyond the scope of this work.

III. FRAMEWORK

In this section, we describe the approach of Landry and
Poisson [27–29] for treating the deformation of a slowly
and rigidly rotating NS caused by a weak, slowly varying
quadrupolar tidal field. The idea is to solve the Einstein-
fluid equations for a NS subject to asymptotic conditions
corresponding to the applied field rather than the standard
asymptotically flat conditions. One can then read off the
induced field, whose amplitude determines the Love
number, from the solution.
We consider a four-dimensional spacetime described by

a metric tensor gαβ, and we treat the NS matter as a perfect
fluid with energy-momentum tensor

Tαβ ¼ ðμþ pÞuαuβ þ pgαβ: ð4Þ

Here, μ and p are the total fluid energy density and
pressure, and uα is the four-velocity of the fluid elements.
The total energy density μ is the sum of the rest mass
density ρ and the internal thermodynamic energy ϵ. We
assume the fluid to be barotropic, with EoS p ¼ pðρÞ. The
remaining fluid state variables follow from the EoS and
the first law of thermodynamics for barotropic fluids,

dðϵ=ρÞ ¼ −pdð1=ρÞ: ð5Þ

The matter and metric satisfy the Einstein equation and, for
a one-parameter EoS, all of the hydrodynamic equations
follow from energy-momentum conservation.
For weak tides and slow rotation, the spacetime and

matter fields describing the NS and its neighborhood
differ by a small amount from those of an isolated,
nonrotating NS. This allows us to work in perturbation
theory about a static, spherically symmetric background
star. We describe the background solution in the follow-
ing subsection.
In Sec. III B, we write down the form of the tidally

perturbed metric. This Ansatz is constructed by adding
terms to the background metric proportional to the
moments of the applied tidal field and the spin of the
star to interpolate between the star and the tidal envi-
ronment, with radial dependence to be determined by the
Einstein equation. We keep terms proportional to Eab,
Bab, χa, as well as the bilinear quantities χaEbc and
χaBbc.
To solve the Einstein equation it is convenient to split the

problem into two parts, the interior and exterior regions of
the star. We present the exterior solution (known analyti-
cally) in subsection III C. The exterior solution matches to
the applied field far away, but also contains subleading
parts with undetermined coefficients, the four scaled Love
numbers fKel

2 ; K
mag
2 ;Fo;Kog. These quantities are deter-

mined by matching to the interior solution, which is
required to be regular at the origin. We describe the matter
part of the interior solution in Sec. III D, and the solution
for the metric—as well as the procedure for obtaining the
Love numbers—in Sec. III E. The interior solution will
typically be determined numerically, and it depends on the
chosen fluid EoS.
We assume throughout that the dynamical time scaleffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=ðM þMtidÞ

p
of the tidal field is much longer than the

characteristic time scale
ffiffiffiffiffiffiffiffiffiffiffiffi
R3=M

p
of the internal stellar

dynamics. This is a physically reasonable assumption for
the inspiral stage of a binary NS system when the orbital
separation is many times larger than the stellar radius.
Accordingly, we treat the applied tides as stationary.

A. Background solution

The background solution is taken to be a static, spheri-
cally symmetric star with line element

ds2 ¼ −e2ψðrÞdt2 þ fðrÞ−1dr2 þ r2dS2; ð6Þ

where fðrÞ≡ 1–2mðrÞ=r and dS2 ≡ SABdθAdθB. The
functions ψðrÞ and mðrÞ are determined from the matter
by the Einstein equation, which reduces to two ordinary
differential equations (ODEs),

dm
dr

¼ 4πr2μ̄; ð7Þ
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dψ
dr

¼ mþ 4πr3p̄
r2f

: ð8Þ

Here, and in the rest of Sec. III, we use overbars to
denote background quantities. Conservation of energy-
momentum, along with the above equations, yields the
Tolman-Oppenheimer-Volkoff (TOV) equation,

dp̄
dr

¼ −
ðμ̄þ p̄Þðmþ 4πr3p̄Þ

r2f
: ð9Þ

The equations of structure Eqs. (7)–(9) are completed by the
EoS. Outside the star, where Tαβ ¼ 0, the solution is
Schwarzschild, with fðrÞ ¼ e2ψðrÞ ¼ 1–2M=r. Inside the
star (0 ≤ r ≤ R), the equations of structure are solved subject
to the regularity condition mð0Þ ¼ 0 at the center, and the
matching conditions p̄ðRÞ ¼ 0 andmðRÞ ¼ M at the surface.

B. Perturbed metric Ansatz

Following the detailed analysis of Refs. [27–29], the
metric describing the tidally deformed, slowly rotating star
is constructed by adding deformation terms to the unper-
turbed metric (6). To describe the pure tidal response, we
add terms proportional to the applied quadrupolar tidal field
Eab and Bab. To describe the slow rotation we add a term
proportional to the angular velocity Ωa ≡ χaM2=I, where I
is the moment of inertia. And to study the rotational-tidal
response we add terms proportional to the bilinear quan-
tities ΩaEbc and ΩaBbc. These mixed terms are decom-
posed with respect to parity and multipole order (dipole,
quadrupole, octupole) into the bilinear moments defined in
Table I. All the terms are multiplied by functions of r to be
determined later using the field equations. The radial
functions are designed to encapsulate the star’s tidal
response, and ensure that at large r the metric asymptotes
to that of the tidal environment [44].
The precise form of the perturbed metric is constructed

such that it transforms suitably under parity and rotations.
To do this, all moments—tidal, rotational, rotational-
tidal—are repackaged into a set of potentials by taking

duals and contracting with the unit radial vector
na ≡ xa=r and its angular derivatives naA ≡ ∂na=∂θA (see
Table II). These are inserted according to their trans-
formation properties in the various components of the
metric. In Regge-Wheeler gauge, the perturbed metric takes
the form

gtt ¼ −e2ψðrÞ þ eqttðrÞEq þ kdttðrÞKd þ kottðrÞKo; ð10aÞ

gtr ¼ êqtrðrÞÊq þ kdtrðt; rÞKd þ kotrðt; rÞKo; ð10bÞ

grr ¼ f−1 þ eqrrðrÞEq þ kdrrðrÞKd þ korrðrÞKo; ð10cÞ

gtA ¼ ½1 − ωðrÞ�r2Ωd
A þ bqt ðrÞBq

A þ b̂qt ðt; rÞB̂q
A

þ fdt ðrÞF d
A þ fot ðrÞF o

A; ð10dÞ

grA ¼ b̂qrðrÞB̂q
A; ð10eÞ

gAB ¼ r2SAB þ eqðrÞSABEq þ koðrÞSABKo: ð10fÞ

This form of the metric ensures that the perturbed Einstein
equation will automatically decompose according to the
potentials. Close examination of the metric shows that
the star’s spin appears only in gtA, the pure gravitoelectric
tide appears in the diagonal components, and the pure
gravitomagnetic tide appears only in gtA [8].
Most of the coefficients of the potentials in Eq. (10) are

functions of r alone as a consequence of our assumption of
stationary tides. However, some of them acquire a time
dependence through gravitomagnetic induction inside the
rotating star, even when Bab is stationary [29]. Without the
internal dynamics, the nonaxisymmetric part of the tidal
response would violate the Einstein equation. Following
Refs. [28,29], we assume that the time dependence of the

TABLE I. Bilinear moments resulting from couplings of the
dipole angular velocity vector Ωa to the quadrupolar tidal field.
Parentheses indicate symmetrization and angular brackets in-
dicate the STF operation (symmetrization and removal of all
traces).

Moment Definition Parity Multipole order l

F a EabΩb Odd 1
Êab 2ΩcϵcdðaEd

bÞ Even 2
F abc EhabΩci Odd 3

Ka BabΩb Even 1
B̂ab 2ΩcϵcdðaBd

bÞ Odd 2
Kabc BhabΩci Even 3

TABLE II. Potentials appearing in the metric and fluid Ansätze
of Eqs. (10) and (15). The construction of the tidal potentials is
described in Ref. [44] and the bilinear potentials in Refs. [27,31].

Potential Definition

Ωd
A ϵabcnbΩcnaA

Eq Eabnanb

Bq
A ϵabcnbBc

dndnaA

F d
A ϵabcnbF cnaA

Êq Êabnanb

Êq
A ðδab − nanbÞÊbcncnaA

F o
A ϵabcnbF c

dendnenaA

B̂q
A ϵabcnbB̂

c
dndnaA

Kd Kana

Kd
A ðδab − nanbÞKbnaA

Ko Kabcnanbnc

Ko
A ðδad − nandÞKdbcnbncnaA
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metric perturbations associated with kdtr, b̂
q
t , and kotr can be

at most linear in Ωt. The field equations then show that

kdtrðt; rÞ ¼ tkdtr1ðrÞ; ð11aÞ

b̂qt ðt; rÞ ¼ tb̂qt1ðrÞ; ð11bÞ

kotrðt; rÞ ¼ tkotr1ðrÞ: ð11cÞ

While time dependence of some kind is physically required,
the linear growth is an artifact of the perturbative expansion.
Indeed, the time dependence has been shown to be bounded
in a physical setting [28]. The functions (11) vanish outside
the star, so the exterior solution remains stationary.

C. Exterior solution

Outside the star, the energy-momentum tensor vanishes.
Using the metric Ansatz (10), and discarding terms of
second or higher order in spin or tides, the vacuum Einstein
equation decouples according to the potentials into ODEs.
These can then be integrated to obtain analytic expressions
for the radial functions [27].
The function ω satisfies the ODE

r
d2ω
dr2

þ 4
dω
dr

¼ 0; ð12Þ

and we choose ω ¼ 1–2I=r3 as the solution so that, in the
absence of tides, the exterior reduces to the linearized
Kerr spacetime. The solution contains a free parameter, the
moment of inertia I, which must be determined by match-
ing to the interior solution.
The equations for the radial functions associated with the

tidal potentials Eq and Bq
A reduce to two second-order

homogeneous ODEs. One of them determines the function
eqtt, which is algebraically related to the other gravito-
electric-sector functions feqrr; eqg. The other governs the
sole gravitomagnetic-sector function bqt .
For each ODE, there exist two independent solutions:

one decaying in powers of r, the other growing. The
amplitude of the growing solution is set so that the
spacetime outside the star matches onto the tidal

environment at large r. The amplitude of the decaying
solution—the tidal Love number—is set by matching to the
regular interior solution at r ¼ R. The exterior solutions for
eqtt and bqt , involving undetermined scaled Love numbers
Kel

2 and Kmag
2 , are listed in Table III.

The radial functions associated with the bilinear poten-
tials satisfy second-order inhomogeneous ODEs sourced
by the functions eqtt, b

q
t and ω, which generate particular

solutions in addition to the growing and decaying ones.
Nevertheless, there are still two free parameters in each
exterior solution, and they are set by the boundary con-
ditions at the stellar surface and at large r. In this case,
however, the coefficient of a decaying solution is not
necessarily a Love number: some of the constants are pure
gauge [27] (see Appendix C for an example). By carefully
identifying and eliminating the gauge constants, one is left
with two ODEs for the octupole radial functions: the first
determines fot , and the second determines kott, which is
algebraically related to fkorr; kog. Analytic expressions for
these functions—involving the undetermined scaled rota-
tional-tidal Love numbers Fo and Ko—are given in
Table III. The functions fkdtr; b̂qt ; kotrg vanish by virtue of
the vacuum Einstein equation.
The result of this discussion is that only a subset

feqtt; bqt ; kott; fot g of the external radial functions are needed
to compute the Love numbers. These functions appear
solely in the tt and tA components of the metric. For the
complete exterior solution to the problem, we refer the
reader to Ref. [27].

D. Perturbed fluid

The interior solution is governed by the hydrodynamic
equations. In this subsection, we use these equations and
the Einstein equation to cast the fluid variables in terms of
the radial functions from the metric Ansatz.
We begin by decomposing the perturbed fluid variables

μ, p, ur and uA in terms of the tidal and bilinear potentials
of Table II, as was done for the metric Ansatz. (The time
component of the fluid four-velocity is automatically fixed
by properly normalizing uα.) The decomposition is pre-
sented in detail in Refs. [28,29].

TABLE III. Select radial functions appearing in the tt and tA components of the exterior metric, expressed in terms of x ¼ r=ð2MÞ. All
functions within square brackets behave as 1þOð1=xÞ when x ≫ 1. We remark that our expression for fot differs from that of
Refs. [27,28] because of our redefinition of Fo (see Sec. III F).

eqtt ¼ −4M2x2fð1 − 1
xÞ2 þ 2

x5
½−30x3ðx − 1Þ2 ln ð1 − 1

xÞ − 5
2
xð2x − 1Þð6x2 − 6x − 1Þ�Kel

2 g
bqt ¼ 16M3x3

3
fð1 − 1

xÞ − 3
x5
½20x4ðx − 1Þ ln ð1 − 1

xÞ þ 5
3
xð12x3 − 6x2 − 2x − 1Þ�Kmag

2 g
kott ¼ −4Ix2f 1

x7 ½−10x4ðx − 1Þð280x3 − 420x2 þ 140xþ 3Þ ln ð1− 1
xÞ− 2800x7 þ 5600x6 − 9100

3
x5 þ 610

3
x4 þ 115

3
x3 þ 5x2 − 5

6
x − 5

6
�Kmag

2

þ 2
x6
½−420x4ð2x− 1Þðx− 1Þ2 ln ð1− 1

xÞ− 7x2ð120x4 − 240x3 þ 130x2 − 10x− 1Þ�Ko þ 1
2x2 −

1
2x3g

fot ¼ 8IMx3f 5
4x7 ½4x3ð420x5 − 700x4 þ 280x3 þ 5x − 2Þ ln ð1 − 1

xÞ þ 2
3
x2ð2520x5 − 2940x4 þ 420x3 þ 70x2 þ 44xþ 3Þ�Kel

2

þ 2
x6 ½210x5ð3x − 2Þðx − 1Þ ln ð1 − 1

xÞ þ 7
2
x2ð180x4 − 210x3 þ 30x2 þ 5xþ 1Þ�Fo − 5

12x3 þ 1
6x4g
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We next impose energy-momentum conservation. For an
unperturbed barotrope satisfying the first law of thermody-
namics (5), this reduces to the conservation statement
Luωαβ ¼ 0, where Lu is a Lie derivative along uα. In other
words, the vorticity tensor ωαβ ≡ ∂αðhuβÞ − ∂βðhuαÞ is
conserved along the fluid wordlines. Here, h≡ ðμþ pÞ=ρ
is the specific enthalpy. Taking a variation, and assuming that
the EoS is unchanged by the perturbation, it follows that

LuΔωαβ ¼ 0; ð13Þ
where Δωαβ denotes the Lagrangian perturbation of the
vorticity tensor (see Sec. 7.4.2 of Ref. [48] for a derivation).
We suppose that the tidally deformed, slowly rotating

star began in an unperturbed state at t ¼ 0, and that the
tidal field was switched on adiabatically. Equation (13) then
implies that

Δωαβ ¼ 0 ð14Þ
for all time. This is the natural state that arises in a binary
system that was widely separated in the distant past. The
vorticity preservation condition (14) almost completely
constrains the perturbed fluid variables. Apart from the
freedom to add stationary r- and g-modes, which we
suppress following Refs. [28,29], there remains some
freedom in uA. This freedom is fixed by the Einstein
equation, and all the perturbed fluid variables can be related
to the radial functions appearing in Eq. (10).
We impose Eq. (14) to place the NS in a vorticity-

preserving state, which we call the irrotational state
because its vorticity vanishes in the Ω → 0 limit. After a
lengthy calculation [28,29], the full expressions for the
perturbed fluid variables are found to be

μ ¼ μ̄þ 1

2
e−2ψ ðμ̄þ p̄Þ dμ̄

dp̄
eqttEq; ð15aÞ

p ¼ p̄þ 1

2
e−2ψðμ̄þ p̄ÞeqttEq; ð15bÞ

ur ¼ e−ψ êqtrÊ
q − te−ψ

�
1

8πr2ðμ̄þ p̄Þ − 1

�
kdtr1K

d

− te−ψ
�

3

4πr2ðμ̄þ p̄Þ − 1

�
kotr1K

o; ð15cÞ

uA¼−e−ψr2ωΩd
A−

1

6
r2e−3ψ

�
1−ωþdμ̄

dp̄

�
eqttÊ

q
A

þe−ψfdtF d
Aþe−ψfotF o

Aþ
1

3
te−ψωbqt B̂

q
A

−
te−ψ

16πr2ðμ̄þp̄Þ
�
r2f

dkdtr1
dr

þ2½m−2πr3ðμ̄−p̄Þ�kdtr1
�
Kd

A

−
3te−ψ

16πr2ðμ̄þp̄Þ
�
r2f

dkotr1
dr

þ2½m−2πr3ðμ̄−p̄Þ�kotr1
�
Ko

A:

ð15dÞ

The time dependent terms in the fluid velocity represent
dynamical currents induced by the stationary gravitomag-
netic tidal field; they are tied to the time dependent radial
functions introduced in Sec. III B. The linear dependence
on t may be viewed as a consequence of our slow rotation
approximation.

E. Interior solution

With the Ansätze (10) and (15) for the metric and fluid
variables, the perturbed Einstein equation is solved in the
stellar interior. The undetermined radial functions in the
metric satisfy generically inhomogeneous second-order
ODEs. Thus, there exist two independent homogeneous
solutions, plus a particular solution, for each differential
equation. We demand that the solution be regular at the
origin, and that the interior solution match the exterior one
at the surface, up to first derivatives. While the system may
appear to be overdetermined at first glance, with three
conditions on two free parameters, we recall that the
exterior solution also has a free parameter: the Love
number (or the moment of inertia in the case of ω). The
matching condition fixes this final parameter, and deter-
mines the tidal response.
In general, the interior ODEs must be integrated numeri-

cally, as they depend on the fluid EoS, and we implement a
shooting method to obtain the solutions. We perform a local
analysis of each ODE near r ¼ 0 to determine the regularity
conditions, and we then integrate outwards to the surface.
Here, the matching conditions determine the amplitude of
the regular solution and the free parameter of the exterior
solution.
Consider, for example, the rotation. The function ωðrÞ

satisfies

rf
d2ω
dr2

þ ½4f − 4πr2ðμ̄þ p̄Þ� dω
dr

− 16πrðμ̄þ p̄Þω ¼ 0

ð16Þ

inside the star. At the surface, ω matches on to the external
solutionωðr > RÞ ¼ 1–2I=r3. Writing 0 ≡ d=dr, regularity
of ω at the origin requires ω0ð0Þ ¼ 0, with ωð0Þ set by
matching to the external solution. The matching conditions
also determine the specific value of I that appears in the
exterior metric.
In the remainder of this section, we detail our method

for calculating the four scaled Love numbers
fKel

2 ; K
mag
2 ;Fo;Kog. Like in the external problem, the

relevant ODEs involve only a small number of radial
functions. In addition to the set feqtt; bqt ; kott; fot g from
above, we also require kotr1, which is nonvanishing in the
interior and appears with kott in a coupled system of
differential equations.
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1. Gravitoelectric sector: Kel
2 and Fo

The scaled gravitoelectric tidal Love number Kel
2 is

determined by solving for the radial function eqtt, which
appears in gtt. In the interior of the star, this function
satisfies the ODE [28]

r2f
d2eqtt
dr2

− 2

�
3m
r

− 1þ 2πr2ðμ̄þ 3p̄Þ
�
r
deqtt
dr

− 2

�
3 − 2πr2ðμ̄þ p̄Þ

�
3þ dμ̄

dp̄

��
eqtt ¼ 0: ð17Þ

Wewould like to find a regular solution to this equation that
matches the corresponding external expression given in
Table III up to first derivatives at r ¼ R. Local analysis of
Eq. (17) near r ¼ 0 shows that the regular solution has
eqttð0Þ ¼ eq0tt ð0Þ ¼ 0, so its amplitude is determined by
eq00tt ð0Þ. The matching conditions at the surface then yield
the value of Kel

2 .
The scaled gravitoelectric rotational-tidal Love

number Fo is calculated from the solution for fot , which
satisfies [28]

0¼ r2f
d2fot
dr2

− 4πr3ðμ̄þ p̄Þdf
o
t

dr
þ 4

�
m
r
− 3þ 2πr2ðμ̄þ p̄Þ

�
fot − 16πr2ðμ̄þ p̄Þfot þ r3e−2ψð1−ωÞ

�
9m
r

− 2þ 20πr2p̄

�
deqtt
dr

þ 2r2e−2ψ
��

5m
r

þ 2

�
ð1−ωÞþ 2πr2ðμ̄þ p̄Þ

�
6þ dμ̄

dp̄

�
ωþ 2πr2ðμ̄þ p̄Þ

�
dμ̄
dp̄

− 2

��
eqtt ð18Þ

in the interior. At the center, Eq. (18) yields a regular solution fot ∝ r4. The matching conditions at the surface then
determine Fo.2

2. Gravitomagnetic sector: Kmag
2 and Ko

The scaled Love numbersKmag
2 andKo are calculated in a similar fashion asKel

2 andFo. The scaled gravitomagnetic tidal
Love number is determined by solving for the radial function bqt , which satisfies [29]

r2f
d2bqt
dr2

− 4πr3ðμ̄þ p̄Þ db
q
t

dr
− 2

�
3 −

2m
r

− 4πr2ðμ̄þ p̄Þ
�
bqt ¼ 0: ð19Þ

The regularity condition derived from a local analysis of (19) is bqt ∝ r3 near r ¼ 0. The matching procedure at r ¼ R yields
the value of Kmag

2 .
The calculation of Ko is slightly more complicated, since two coupled ODEs must be solved. First, we determine

the radial function kotr1 throughout the star. It satisfies the ODE [29]

0 ¼ r2f
d2kotr1
dr2

þ
�
3ðm − 4πr3μ̄Þ þ ðmþ 4πr3p̄Þ dμ̄

dp̄

�
dkotr1
dr

−
2

r2f

�
2½3 − 5πr2ðμ̄þ p̄Þ þ 8π2r4p̄2�r2 − 2½5 − 2πr2ð5μ̄þ 7p̄Þ�rm − 3m2 − ðmþ 4πr3p̄Þ2 dμ̄

dp̄

�
kotr1

−
32π

3
r2ðμ̄þ p̄Þω dbqt

dr
þ 16π

3
ðμ̄þ p̄Þ

�
r2

dω
dr

þ 2
3r − 7m − 4πr3p̄

f
ω

�
bqt : ð20Þ

Since kotr1 vanishes outside the star, the matching conditions at the surface are simply kotr1ðRÞ ¼ ko0tr1ðRÞ ¼ 0. (Note that
these boundary conditions do not overdetermine the system [29].) Based on a local analysis of Eq. (20), the regular solution
has kotr1 ∝ r4 at the origin.
Second, we solve for the radial function kott, which satisfies [29]

0 ¼ r2f
d2kott
dr2

þ 2

�
1 −

3m
r

− 2πr2ðμ̄þ 3p̄Þ
�
r
dkott
dr

þ 4

�
πr2ðμ̄þ p̄Þ

�
3þ dμ̄

dp̄

�
− 3

�
kott þ

1

2
r2f

�
dμ̄
dp̄

− 1

�
dkotr1
dr

þ
��

11þ dμ̄
dp̄

�
mþ 2πr3

�
ðμ̄þ 7p̄Þ − ðμ̄ − p̄Þ dμ̄

dp̄

�
− 4r

�
kotr1 þ S1r

dbqt
dr

þ S0b
q
t ; ð21Þ

2As mentioned in Ref. [28], the value of Fo is sensitive to the presence of stellar r-modes; such modes would modify Eq. (18). The
values of Fo computed here correspond to stars free of r-modes.
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with

S1 ¼ −
2

3

�
5m2

r2
þ 3 − 16π2r4p̄2 þ 4πr2μ̄ −

m
r
½9þ 8πr2ðμ̄þ p̄Þ�

�
r
dω
dr

−
4

3

�
3 −

m
r
½9 − 4πr2ðμ̄þ p̄Þ� − 4πr2p̄½3 − 4πr2ðμ̄þ p̄Þ�

�
ωþ 4

�
1 −

3m
r

− 4πr2p̄

�
; ð22aÞ

S0¼
2

3

�
10m2

r2
þ4πr2½ð3−8πr2p̄Þp̄þ2μ̄�−m

r
½3þ16πr2ðμ̄þ p̄Þ�

�
r
dω
dr

þ4

3

�
m
r
½6þ8πr2ðμ̄þ p̄Þ�þ

�
9−4πr2ðμ̄þ p̄Þ

�
6þdμ̄

dp̄
−8πr2p̄

���
ω−4

�
2m
r
−
�
2πr2ðμ̄þ p̄Þ

�
1þdμ̄

dp̄

�
−3

��
:

ð22bÞ

A local analysis of Eq. (21) reveals that the regular
solution has kott ∝ r3 near the origin. Finally, the matching
conditions at the surface determine Ko.

F. Redefinition of Fo

As noted in the introduction, the definition of the scaled
gravitoelectric rotational-tidal Love number Fo given in
this work differs from that of Landry and Poisson [27,28];
namely,

Fo½here� ¼ Fo½LP� − 5

3
Kel

2 ; which implies

fo½here� ¼ fo½LP� þ 5

3
kel2 : ð23Þ

We claim that our new definition is more consistent with
the interpretation of Fo as a scaled rotational-tidal Love
number.
With Landry and Poisson’s definition ofFo, the octupole

part of the tA component of the exterior metric takes the
schematic form

gl¼3
tA ¼ −

10M
3r2

�
M2

r
þ � � � þ 6

5
fo½LP�

�
R
r

�
5

ð1þ � � �Þ

þ 2kel2

�
R
r

�
5

ð1þ � � �Þ
�
ϵac

dxcEhdbχcixbxexaA; ð24Þ

rather than that of Eq. (2b). (This expression can be
obtained by expanding the radial function fot from
Table IV of Ref. [27] in powers of M=r.) We see that
there are two separate pieces that decay in r at the same
rate, which means that Fo½LP� is only partially measuring
the response of the body to the spin-coupled gravitoelectric
field. The fact that the Fo½LP� and Kel

2 terms in Eq. (24)
have the same scaling with r, however, allows us to shift the
rotational-tidal Love number as in Eq. (23) so that it fully
captures the response.

The unnaturalness of Landry and Poisson’s definition is
clearly demonstrated in Fig. 1, reproduced from Ref. [28]
with the addition of the incompressible fluid results. We see
that the polytrope fo½LP� vs. compactness curves intersect
one another and do not tend monotonically to the incom-
pressible fluid. This is contrary to physical intuition, and it
differs qualitatively from results for the other three Love
numbers (see Fig. 2). These discrepancies disappear when
our new definition for the rotational-tidal Love number is
used, as Fig. 2(c) shows.
We have two additional comments on our definition of

Fo. First, the shift in Eq. (23) has the same effect in the
light-cone gauge [49] employed in Ref. [27] as it does here.
This confirms that our new definition is not just a quirk of
the Regge-Wheeler gauge. Second, our new definition of
Fo coincides with the scaled rotational-tidal Love number

δλ̃ð32ÞM of Ref. [26] up to a constant factor [28].

FIG. 1. Gravitoelectric rotational-tidal Love number fo½LP� as a
function of compactness. This is a reproduction of Fig. 1 of
Ref. [28] with the addition of the incompressible fluid results. We
employ a different definition of fo elsewhere in the paper—see
Eq. (23).
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IV. LOVE NUMBERS FOR POLYTROPES

In this section, we test our methods by computing Love
numbers for polytropes. We show that our results are
consistent with similar calculations in the literature, and
that when we take suitable limits they match post-
Newtonian and incompressible fluid calculations. The
consistency checks we perform are important as they
provide support for our findings, which disagree with those
of Ref. [26].
In Fig. 2, we plot the Love numbers for various

polytropes as a function of stellar compactness. We use
the mass polytrope EoS pðρÞ ¼ Kρ1þ1=n, where n > 0 is
the polytropic index and K is a constant.3 A choice of n and
central pressure-to-density ratio pc=ρc ¼ Kρ1=nc uniquely

specifies the stellar model. The Love numbers are plotted
up to the maximum value of M=R for which the given
polytrope is stable against radial perturbations, as per
the turning point criterion (see e.g., Ref. [48]). Our tidal
Love number results agree with Refs. [8,10], while our
rotational-tidal Love numbers match those of Ref. [28]
(modulo the redefinition of Fo).
Figure 2 also includes Love numbers for incompressible

fluid stars. The incompressible fluid constitutes the (sin-
gular) n → 0 limit of the polytropic EoS. We see that
the polytrope curves tend monotonically toward that of the
incompressible fluid as n decreases. The fact that the
incompressible fluid possesses the largest Love numbers
(in magnitude) of all the models is consistent with the
physical intuition that, as the stiffest possible EoS, it should
have the weakest internal gravity and hence the greatest
deformability. Subtleties associated with the calculation of
Love numbers for this uniform-density model are treated in
Appendix B.

(a) (b)

(c) (d)

FIG. 2. Love numbers fkel2 ; kmag
2 ; fo; kog as a function of compactness M=R for different polytropes and an incompressible fluid star.

Circles indicate Love numbers calculated in the post-Newtonian approximation (see also Table IV).

3Here, p and ρ refer to the background pressure and rest mass
density. From this section on, we deal only with unperturbed
fluid quantities, and we therefore drop the overbars on the
background μ and p.
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We also show polytrope and incompressible fluid Love
numbers computed in post-Newtonian theory (indicated
by circles on the vertical axes). Details of these inde-
pendent calculations are provided in Appendix A and the
results are listed in Table IV. It is apparent from Fig. 2 that
the general-relativistic Love numbers match the post-
Newtonian values in the weak-field limit M=R → 0, as
expected. This agreement further validates our Love
number computations.
We now make a direct comparison of our results for the

rotational-tidal Love numbers with those of Ref. [26].
Pani, Gualtieri and Ferrari employ slightly different
definitions for the Love numbers, but we derive the
relation between the two conventions in Appendix D.
The scaled gravitoelectric and gravitomagnetic rota-
tional-tidal Love numbers of Ref. [26], respectively

δλ̃ð32ÞM and δλ̃ð32ÞE , are merely rescaled by a constant factor
relative to our own definitions:

δλ̃ð32ÞM ¼ 96ffiffiffiffiffiffi
5π

p Fo; δλ̃ð32ÞE ¼ −144
ffiffiffi
7

5

r
Ko: ð25Þ

Provided our model of the NS’s fluid interior is the same,
our Love numbers can be compared with this mapping.
Whereas in general the two frameworks make different
assumptions about the state of the fluid—irrotational
versus static—these states coincide in the gravitoelectric
octupole sector when the star is free of r- and g-modes
[10,28]. Thus, for the same EoS, both sets of results for
Fo should agree. Pani, Gualtieri and Ferrari computed
Love numbers for an n ¼ 1 energy polytrope with EoS
pðμÞ ¼ Kμ1þ1=n, which should coincide with our mass
polytrope in the weak-field limitM=R → 0. Nevertheless,
Fig. 3 shows disagreement between our results and those
of Ref. [26]. The fact that our general-relativistic results
agree in the limit with the post-Newtonian calculation of
fo gives us confidence in the conclusions we draw from
our work, and simultaneously raises some questions
about the computations of Ref. [26], at least at low
compactness.

V. LOVE NUMBERS FOR REALISTIC
EQUATIONS OF STATE

Having checked our method on polytropes, we now turn
to realistic EoSs. We use a piecewise polytrope approxi-
mation to the tabulated EoSs computed in nuclear theory.
In the stellar core, each model consists of a three-
piece polytrope with an overall scale, resulting in four
EoS-dependent parameters in total. The crust is always
described by a four-piece polytropic approximation to the
SLy EoS. This description of realistic EoSs follows closely
that of Ref. [34], which we summarize here.
The stellar core EoS is taken to be

pðρÞ ¼
8<
:

K1ρ
Γ1 ; ρ0 ≤ ρ ≤ ρ1;

K2ρ
Γ2 ; ρ1 ≤ ρ ≤ ρ2;

K3ρ
Γ3 ; ρ2 ≤ ρ;

ð26Þ

with the transition rest mass densities ρ1 ≡ 1014.7 g=cm3

and ρ2 ≡ 1015.0 g=cm3. (The transition density ρ0 is deter-
mined by matching at the crust-core interface.) The
parameters Ki are determined in terms of the overall scale
of pðρÞ by requiring continuity. Indeed, evaluating pðρ1Þ
sets K1 ¼ pðρ1Þρ−Γ1

1 , and imposing continuity at the
interfaces ρ1 and ρ2 gives the recursive formula

Kiþ1 ¼ Kiρ
Γi−Γiþ1

i ; i ¼ 1; 2: ð27Þ

Thus, the four parameters fpðρ1Þ;Γ1;Γ2;Γ3g specify the
EoS in the stellar core. Using continuity, the internal energy
density ϵ is determined by the first law (5) to be

TABLE IV. Post-Newtonian values of the Love numbers for the
EoSs considered in Fig. 2, calculated with the methods of
Appendix A.

EoS kel2 kmag
2 ð×10−3Þ fo ko

Incompressible 0.7500 −14.29 1.339 0.2083
n ¼ 0.50 0.4492 −10.04 0.8539 0.1385
n ¼ 0.75 0.3434 −8.330 0.6770 0.1124
n ¼ 1.00 0.2599 −6.850 0.5334 0.090 50
n ¼ 1.50 0.1433 −4.478 0.3235 0.057 40
n ¼ 2.00 0.073 94 −2.763 0.1886 0.035 01
n ¼ 2.50 0.034 85 −1.575 0.1044 0.020 26

FIG. 3. Gravitoelectric rotational-tidal Love number fo for an
n ¼ 1 polytrope. The solid black curve corresponds to our mass-
polytrope results, whereas the dashed red curve is inferred via
Eq. (25) from the energy-polytrope results labeled “POLYn1” in
the bottom right panel of Fig. 5 of Ref. [26]. The black circle
shows the result of the post-Newtonian calculation, which both
mass and energy polytropes should match.

GAGNON-BISCHOFF, GREEN, LANDRY, and ORTIZ PHYS. REV. D 97, 064042 (2018)

064042-12



ϵðρ; ρi−1 ≤ ρ ≤ ρiÞ ¼ aiρþ
1

Γi − 1
Kiρ

Γi ; with

ai ¼
ϵðρi−1Þ
ρi−1

−
Ki

Γi − 1
ρΓi−1
i−1 ; i ¼ 1; 2; 3;

ð28Þ

and from this, we obtain the total energy density μ. Since ai
depends on ϵðρi−1Þ, a1 is determined from the crust-core
interface, and then a2 and a3 follow recursively.
The stellar crust model is similar to the core, except:

(1) It consists of four polytropic phases—indexed by
i ¼ −3;−2;−1, 0—instead of three; (2) Instead of
pðρ−3Þ, we are directly given the constants fK−3; K−2;
K−1; K0g; and (3) The crust model depends on the core via
the interface density,

ρ0 ¼
�
K1

K0

�
1=ðΓ0−Γ1Þ

: ð29Þ

The remaining parameter needed to describe the crust,
a−3, is fixed to zero by requiring that ϵ=ρ → 0 in the zero
rest mass density limit. Numerical parameters for the
SLy crust model are provided in Ref. [34], and we display
them in Table V. Given the core, the crust is fully specified,
so the full stellar EoS is determined by the parameters
fpðρ1Þ;Γ1;Γ2;Γ3g.
Of the 34 candidate EoSs studied in Ref. [34], we

consider the seven that give rise to stable stars with
maximum masses greater than 2 M⊙ while avoiding super-
luminal sound propagation. This is consistent with the
highest observed NS masses of ð1.97� 0.04ÞM⊙ [35] and
ð2.01� 0.04ÞM⊙ [36]. Five of the EoSs describe pure
npeμ nuclear matter—SLy [50], ENG [51], MPA1 [52],
MS1 [53], and MS1b (which is identical to MS1 but with a
low symmetry energy of 25 MeV [34]). The other two, H4
[54] and ALF2 [55], include nonstandard nuclear compo-
nents (hyperons and color-flavor-locked quark matter,
respectively). Parameters for the piecewise polytrope
approximations are given in Table VI.
We restrict our attention to configurations with masses

of astrophysical relevance (M > M⊙ [56,57]) that are
stable against radial perturbations according to the turning

point criterion. In addition, the crust in realistic NSs should
constitute a small fraction of the whole star [58]. Defining
rcc as the radial position of the crust-core interface, and
Mcr ≡M −mðrccÞ as the crust’s mass, we note that our
configurations satisfy

Mcr < 0.045M; ð30aÞ

R − rcc < 0.15R: ð30bÞ

In Fig. 4, we plot the Love numbers fkel2 ; kmag
2 ; fo; kog for

our seven EoSs as functions of the stellar compactness.
For comparison, we include Love numbers for n ¼ 0.5,
n ¼ 0.75, and n ¼ 1 polytropes. We also display the Love
numbers corresponding to a canonical 1.4 M⊙ NS in
Table VII.
A number of interesting features are apparent in Fig. 4.

First, all the Love numbers have a definite sign; we do not
observe the zero-crossings reported in Ref. [26]. Second,
the Love numbers for realistic EoSs are clustered between
the n ¼ 0.5 and n ¼ 1 polytrope curves. There is, however,
a qualitative difference between the slope of the curves for
the npeμ-matter EoSs (SLy, ENG, MPA1, MS1, MS1b;
shown solid in Fig. 4) and the remaining two (H4, ALF2;
shown dashed). Love numbers for the npeμ-matter EoSs
also approach the n ¼ 0.5 polytrope curve at high compact-
ness. This limiting behavior is expected for SLy, ENG and
MPA1, since—according to Table VI—those EoSs have
adiabatic indices Γ3 close to 3 (i.e. n ≈ 0.5).
The limiting behavior also demonstrates that the crust

makes a negligible contribution to the Love numbers at
large compactness, since its adiabatic indices Γi are
significantly smaller than 3. At low compactness, however,
the crust becomes important because it constitutes a larger
fraction of the NS, since the crust-core interface density ρ0
is attained deeper inside the star. The softness of the crust is
responsible for the flattening of the Love number curves
observed for M=R≲ 0.15.

VI. I-LOVE RELATIONS

As we described in the introduction, universal relations
between macroscopic properties of NSs have emerged

TABLE V. Parameters of the four-piece polytropic crust model.
The constants Ki are in cgs units so that p ¼ Kiρ

Γi is in
dyne=cm2. The crust-core interface density ρ0 depends on the
core parameters K1 and Γ1 through Eq. (29).

Phase Ki Γi ρi (g=cm3)

−3 6.112 52 × 1012 1.584 25 2.440 34 × 107

−2 9.543 52 × 1014 1.287 33 3.783 58 × 1011

−1 4.787 64 × 1022 0.622 23 2.627 80 × 1012

0 3.593 89 × 1013 1.356 92 ρ0

TABLE VI. Parameters for the piecewise polytropic fits mod-
eling the EoSs that we consider. In this table, p is measured in
units of dyne=cm2.

EoS SLy ENG MPA1 MS1 MS1b H4 ALF2

log10pðρ1Þ 34.384 34.437 34.495 34.858 34.855 34.669 34.616
Γ1 3.005 3.514 3.446 3.224 3.456 2.909 4.070
Γ2 2.988 3.130 3.572 3.033 3.011 2.246 2.411
Γ3 2.851 3.168 2.887 1.325 1.425 2.144 1.890
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as a promising tool for observational astrophysics and
gravitational-wave astronomy. To date, these relations have
implicated the NS moment of inertia, the scaled tidal Love
numbers, and the spin-induced quadrupole moment. Here,
we extend the universal I-Love relations to include also the
scaled rotational-tidal Love numbers.
We seek EoS-independent functional relationships

between the dimensionless moment of inertia Ī ≡ I=M3

and each of the scaled Love numbers L ∈ fKel
2 ; K

mag
2 ;Fo;

Kog. By plotting Ī against L for every EoS in our sample,4

as in Fig. 5, and performing a log-log polynomial fit,

log10 Īfit ¼
X10
n¼0

cnðlog10 LÞn; ð31Þ

we can assess a given relation’s degree of universality
through the deviations

Δð%Þ ¼ jĪ − Īfitj
Īfit

× 100 ð32Þ

from the fit. The coefficients cn of our fits are listed in
Table VIII, and the deviations are plotted in the insets
of Fig. 5.
We observe deviations from the universal Ī–Kel

2 relation
of less than 0.7%, and of 0.1% on average, for our sample
of EoSs. This is broadly consistent with the results
reported in the literature [26,30], which have maximum
deviations of order 1%. For the Ī–Kmag

2 fit, we find

(a) (b)

(c) (d)

FIG. 4. Love numbers for realistic-EoS NS models. Solid lines are used for npeμ-matter EoSs, while dashed lines denote exotic-
matter EoSs. For comparison, we plot results for n ¼ 0.5, n ¼ 0.75 and n ¼ 1 polytropes with dotted lines (with more densely-spaced
dots corresponding to smaller n).

4There is no established convention in the literature regarding
whether Ī or L should be taken as the independent variable; for
instance, Ref. [30] plots Ī in terms of Kel

2 , but Refs. [26,41] plot
the reverse. We choose to adopt the former arrangement here.
This should be kept in mind as we compare the numerical values
of the I-Love deviations with the latter references.
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maximum deviations of 1.1% (average deviations of
0.3%); residuals of less than 5% (2% on average) were
reported in Ref. [41] for NSs in the irrotational fluid state.
The universality is weaker for the static fluid state:
Refs. [26,41] observed maximum deviations of 6% and
10%, respectively, in this case. We attribute our slightly
smaller deviations overall to differences in the sample of
EoSs used.
We find that the extended I-Love relations involving

the scaled rotational-tidal Love numbers are also nearly
EoS-independent, although the degree of universality is
slightly weaker than for the scaled tidal Love numbers.

TABLE VII. Love numbers corresponding to a 1.4 M⊙ NS for
each realistic EoS studied in Sec. V. The star’s compactnessM=R
is also listed.

EoS M=R kel2 kmag
2 (×10−3) fo ko (×10−2)

SLy 0.1766 0.076 17 −5.977 0.1308 2.048
ENG 0.1727 0.085 30 −6.273 0.1457 2.272
MPA1 0.1662 0.091 30 −6.341 0.1559 2.435
MS1 0.1385 0.105 44 −6.179 0.1845 2.967
MS1b 0.1423 0.107 14 −6.328 0.1860 2.968
H4 0.1482 0.091 62 −5.930 0.1611 2.604
ALF2 0.1627 0.097 77 −6.522 0.1672 2.619

(a) (b)

(c) (d)

FIG. 5. I-Love relations for the scaled Love numbers fKel
2 ; K

mag
2 ;Fo;Kog calculated with the seven realistic EoS models described in

Sec. V. Note that the astrophysical range of interest corresponds to 4 < Ī < 30, but we include larger values of Ī for comparison with
other analyses. Insets show the deviations Δ from universality (in %) for each EoS with respect to fits of the form of Eq. (31) with the
coefficients of Table VIII.

EXTENDED I-LOVE RELATIONS FOR SLOWLY ROTATING … PHYS. REV. D 97, 064042 (2018)

064042-15



For the Ī–Fo fit, deviations from universality average to
0.3%, with a maximum of 1.3%, whereas for the Ī–Ko fit
they average to 0.6%, and are always smaller than 2.5%.
These results are in sharp contrast to Ref. [26], which
reported that I-Love universality was broken by the
scaled rotational-tidal Love numbers—deviations of order

200% and 50% were found for δλ̃ð32ÞM (our Fo) and δλ̃ð32ÞE
(our Ko), respectively, for NSs in the static state. We
suspect that a discrepancy of this magnitude is not simply
due to the difference in fluid state, and is likely rooted
in the same problem that caused our disagreement for
polytropes.
We observe that for the scaled tidal Love numbers,

I-Love universality is weaker in the gravitomagnetic
sector, as claimed by Ref. [26], and we see that the
trend persists for the scaled rotational-tidal Love num-
bers. We also checked that for polytropes, softer EoSs
depart more strongly from the realistic EoS fit (not
shown in Fig. 5), extending existing intuition from the
case of the scaled tidal Love numbers [30]. Indeed, for
polytropes with n ¼ 0.5, n ¼ 0.75, and n ¼ 1, we get
deviations from the Ī–Fo fit of less than 1.4%, 1.75%,
and 3.7%, respectively; for the Ī–Ko fit, the deviations
are less than 2.7%, 3.1%, and 6.0%. We note that the
degree of universality is again stronger in the gravito-
electric sector.
As a consequence of the extended I-Love relations, we

also expect Love-Love universal relations to hold between
each pair of scaled Love numbers, generalizing the
universal Kmag

2 –Kel
2 relation [40]. We check these relations

in Fig. 6.
In Fig. 6(a), we find that Kmag

2 –Kel
2 universality holds

to within 1.8% (0.6% on average) for NSs in the
irrotational state. References [26,40] found corresponding
deviations of less than 3% and 10%, respectively, but
those results refer to the static fluid state. Relations
between Kel

2 and the scaled rotational-tidal Love numbers
[Figs. 6(b) and 6(c)] are slightly less universal, with

deviations of less than 4.5% (1% on average) seen in the
Fo–Kel

2 fit, and maximum deviations of 10.5% (2.5% on
average) for the Kel

2 –K
o fit.5 Similar relations involving

Kmag
2 [Figs. 6(d) and 6(e)] show a slightly better

universality, with deviations of less than 1.2% (0.2%
on average) seen in the Fo–Kmag

2 fit, and maximum
deviations of 4.3% (0.9% on average) for the Kmag

2 –Ko

fit. Finally, the Fo–Ko relation [Fig. 6(f)] shows maxi-
mum deviations of 6.9% (1.6% on average). Coefficients
for each of the fits are given in Table IX.
Given that approximate universality holds between

the dimensionless moment of inertia Ī and each of the
scaled Love numbers fKel

2 ; K
mag
2 ;Fo;Kog, we see no

reason to expect it to be broken when other scaled
rotational-tidal Love numbers are included. In particu-
lar, it may be worthwhile to revisit Ref. [26]’s
claim that scaled quadrupole rotational-tidal Love num-
bers Fq and Kq arising from couplings between the
NS spin and an applied octupolar tidal field do not
satisfy universal I-Love relations. We conjecture that
all of Sec. II’s corrections to the leading-order gravito-
electric quadrupole tides are approximately expressible
in terms of a single scaled Love number, for exam-
ple Kel

2 .
Finally, we remark that the original I-Love-Q study [30]

also covered relations involving the rotational quadrupole
moment Q; we do not investigate these relations here
since Q is second order in spin, and our perturbative
calculation is limited to linear order. Nevertheless, we
expect universal Love-Q relations for scaled rotational-
tidal Love numbers to follow from the original I-Q
relations combined with the extended I-Love relations
presented here.

TABLE VIII. Coefficients of the Ī–L fit for each scaled Love number.

Coefficient Ī–Kel
2 Ī–Kmag

2 Ī–Fo Ī–Ko

c0 8.115 × 10−1 1.232 7.782 × 10−1 9.325 × 10−1

c1 1.763 × 10−1 4.242 × 10−1 1.518 × 10−1 2.035 × 10−1

c2 3.995 × 10−2 2.635 × 10−2 3.849 × 10−2 4.147 × 10−2

c3 −9.958 × 10−4 −3.934 × 10−3 7.846 × 10−3 −7.056 × 10−3

c4 −3.734 × 10−3 −1.171 × 10−4 −4.380 × 10−3 −1.255 × 10−3

c5 1.005 × 10−3 −3.914 × 10−3 −6.483 × 10−3 1.292 × 10−3

c6 9.147 × 10−4 2.898 × 10−3 7.131 × 10−3 3.647 × 10−5

c7 −7.091 × 10−4 3.935 × 10−4 −3.014 × 10−3 −1.413 × 10−4

c8 2.018 × 10−4 −7.399 × 10−4 6.544 × 10−4 8.501 × 10−6

c9 −2.674 × 10−5 1.219 × 10−4 −7.247 × 10−5 6.347 × 10−6

c10 1.377 × 10−6 1.010 × 10−5 3.249 × 10−6 −8.400 × 10−7

5The fact that Ko approaches zero at large values of the
compactness (see Fig. 4) is problematic for a log–log fit. We
overcome this issue by taking Ko to be the independent variable
for the fits in which it is involved.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Universal relations between each pair of scaled Love numbers. Insets show the deviations Δ from universality (in %) for each
EoS with respect to fits of the form of Eq. (31) with the coefficients of Table IX.
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VII. DISCUSSION

In this paper, we studied the Love numbers of slowly
rotating NSs deformed by weak quadrupolar tides. We
computed the rotational-tidal Love numbers fo and ko—for
the first time for realistic NSs in the irrotational fluid
state—as a function of the stellar compactness for seven
chosen EoSs. For astrophysically relevant NS models, they
lie in the ranges 0.03≲ fo ≲ 0.22 and 0.001≲ ko ≲ 0.035.
To assist in future estimates of spin-corrections to tidal
effects in NS binaries, we also provided the Love numbers’
specific numerical values for canonical NSs in Table VII.
We showed that Fo and Ko satisfy extended I-Love

and Love-Love relations that are universal to within a
few percent in almost every case, in contradiction to
previous work [26]. Despite a different choice of fluid
state for the NS, we compared our results with those of
Ref. [26] in the regime of overlap, and found that they do
not agree there. This shows that the discrepancy in our
conclusions is not simply a consequence of the choice of
fluid state. As a check on our computations, we com-
pared our general-relativistic results for polytropes to
Love numbers we computed in post-Newtonian theory,
and we showed that they agree in the weak-field limit.
We also established that our polytrope Love numbers
tend to those of an incompressible fluid as the stiffness

of the EoS is increased. This gives us confidence in our
conclusions.
Universality relations tell us that certain seemingly

unrelated NS properties are in fact functionally interdepend-
ent. In this paper, we have shown that the set of interrelated
quantities involved in I-Love universality can be extended to
include Fo and Ko. This extended I-Love universality
supports the idea that—at an approximate level—NSs are
described by just one more parameter than black holes,
regardless of the EoS [59]. This simplicity in the description
of NSs is thought to be related to the emergence of an
approximate symmetry in compact stars [37], but a complete
theoretical explanation remains elusive. It would be inter-
esting to study universality relations involving quadrupole
[26] and higher-l scaled rotational-tidal Love numbers to
see if universality holds.
The additional reduction in the parameter space of NSs

brought about by extended I-Love universality is especially
useful for gravitational-wave astronomy. When spin-
coupled tidal effects are eventually incorporated into wave-
forms, no new parameters will be needed; to within the
accuracy of measurements, it will suffice to use universality
to replace the scaled rotational-tidal Love numbers with
Kel

2 , the most easily measured Love number. Moreover,
should a rotational-tidal Love number’s contribution to
the phasing of the waveform be degenerate with another
effect—something like the spin-spin and rotational quadru-
pole degeneracy [30], but at higher post-Newtonian
order—an independent measurement of I (from electro-
magnetic observations, for instance) or Kel

2 (from gravita-
tional wave measurements) could break the degeneracy.
As the rotational-tidal Love numbers have now been

computed for a variety of candidate NS models, the next
task is to determine their effect on the phase of the inspiral
waveform. Based on their scalings in the metric, the
rotational-tidal deformations can be just as large as the
pure gravitomagnetic ones. Although it is unlikely that this
precise hierarchy of sizes will carry over directly to the tidal
phasing, rotational-tidal effects may well become important
for future-generation detectors. Modeling spin corrections
to the tidal phase is thus timely and important work, and the
results presented here will be essential for that goal.
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TABLE IX. Coefficients for fits of the same form as Eq. (31)
between each pair of scaled Love numbers L1–L2, with L2 used
as the independent variable. As noted in Footnote 5,Ko is used as
the independent variable when it appears.

Coefficient Kmag
2 –Kel

2 Fo–Kel
2 Kel

2 –K
o

c0 −1.098 2.083 × 10−1 6.083 × 10−1

c1 5.644 × 10−1 1.050 9.359 × 10−1

c2 2.089 × 10−2 −5.389 × 10−2 5.264 × 10−2

c3 −1.826 × 10−2 −2.082 × 10−2 −8.223 × 10−2

c4 4.358 × 10−2 9.608 × 10−2 1.131 × 10−2

c5 −4.877 × 10−3 −2.342 × 10−2 4.248 × 10−2

c6 −3.331 × 10−2 −7.012 × 10−2 1.054 × 10−3

c7 2.430 × 10−2 6.092 × 10−2 −1.276 × 10−2

c8 −5.740 × 10−3 −1.850 × 10−2 −1.818 × 10−3

c9 3.740 × 10−5 1.712 × 10−3 1.345 × 10−3

c10 1.078 × 10−4 7.841 × 10−5 3.018 × 10−4

Coefficient Kmag
2 –Ko Fo–Ko Fo–Kmag

2

c0 −7.455 × 10−1 8.324 × 10−1 2.022
c1 5.566 × 10−1 9.474 × 10−1 1.511
c2 5.909 × 10−2 4.750 × 10−2 −9.236 × 10−2

c3 −3.377 × 10−2 −5.985 × 10−2 −5.106 × 10−3

c4 4.361 × 10−3 9.396 × 10−3 −2.805 × 10−2

c5 1.585 × 10−2 2.685 × 10−2 1.619 × 10−1

c6 2.551 × 10−4 1.023 × 10−3 2.206 × 10−1

c7 −4.713 × 10−3 −8.216 × 10−3 −1.670 × 10−1

c8 −6.642 × 10−4 −1.275 × 10−3 −4.769 × 10−1

c9 4.981 × 10−4 8.753 × 10−4 −3.085 × 10−1

c10 1.118 × 10−4 2.021 × 10−4 −6.576 × 10−2
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APPENDIX A: POST-NEWTONIAN
LOVE NUMBERS

In this section, we calculate the Love numbers
kel2 ; k

mag
2 ; fo, and ko in post-Newtonian theory. The post-

Newtonian results are expected to agree with the general-
relativistic Love numbers in the zero-compactness limit.
General weak-field formulas for the tidal Love numbers
have been derived in the literature: in this regime, the
gravitoelectric tidal Love number kel2 reduces to the
Newtonian Love number k2 [8], which can be calculated
with the recipe presented in Sec. 2.4 of Ref. [60]; and the
post-Newtonian gravitomagnetic tidal Love number kmag

2

can be computed via the integral

kmag
2 ¼ −

2π

15MR4

Z
R

0

ρr6dr: ðA1Þ

derived by Landry and Poisson in Ref. [10].6

The case of the rotational-tidal Love numbers fo and ko

has received an incomplete treatment in the literature, and
we address it more fully in Secs. A 1 and A 2 below. We
derive formulas that are valid for arbitrary barotropic
EoSs, including the incompressible fluid model. We also
find that k2 is automatically determined as a byproduct of
the integration of Eq. (A6) required to compute fo.
Throughout this appendix, we restore the physical units
of Newton’s constant G and the speed of light c.

1. Post-Newtonian fo

As a nonlinear phenomenon, the rotational-tidal cou-
plings which give rise to fo and ko are absent in Newtonian
theory. Accordingly, a post-Newtonian analysis is required
to determine the zero-compactness values of these Love
numbers. In this section, we focus on the gravitoelectric
rotational-tidal Love number fo. The only post-Newtonian
calculation of fo in the literature was performed by Landry
and Poisson in Ref. [27] for the special case of an
incompressible fluid; they found that

fo½LP� ¼ −
�
2GM
c2R

�
5

Fo½LP�

¼ 75

56
≈ 1.339 29 ðincompressible fluidÞ ðA2Þ

in the weak-field regime—we recall that they employ a
different definition of fo than we do [cf. Eq. (23)]. However,
Ref. [27]’s result disagrees with our general-relativistic
calculation of fo½LP�, as is clear from Fig. 1. This
discrepancy originates from a term that was missed by

Landry and Poisson, as we demonstrate below. (One may
note that Eq. (A2) gives the post-Newtonian value of
fo½here�; indeed, the term missed in Ref. [27] happens to
correspond precisely to the difference between the defi-
nitions of fo½here� and fo½LP�.)
We perform a completely general post-Newtonian cal-

culation of fo for an arbitrary barotropic EoS. Our strategy
is as follows: first, we take the unperturbed configuration
to be a nonrotating, isolated Newtonian star. Next, we
introduce rotational and l ¼ 2 tidal perturbations. We solve
the problem at linear order in the perturbations using
Newtonian theory, and then calculate the leading-order
terms in the post-Newtonian metric describing the space-
time outside the tidally deformed, rotating star.7 Finally, we
compare this post-Newtonian metric to the general-relativ-
istic metric of Sec. III C in the weak-gravity limit, and we
solve for fo algebraically. The remainder of this section is
dedicated to presenting these manipulations in detail.
The density profile ρ of a nonrotating, isolated

Newtonian star is a solution to the equations of structure
for a spherically symmetric ball of fluid, [60]

dp
dr

¼ −ρ
Gm
r2

;
dm
dr

¼ 4πr2ρ: ðA3Þ

These equations are supplemented by a barotropic EoS
p ¼ pðρÞ. Once this background configuration is deter-
mined, a velocity field

va ¼ ϵabcΩbxc ðA4Þ

describing rigid rotation is imposed on the unperturbed star.
We point out that the density perturbation caused by
rotation is proportional to Ω2 because centrifugal effects
are of that order. Therefore, to the approximation level of
the general-relativistic perturbation theory, which neglects
terms of second order in spin, we can ignore any rotational
effects in the density perturbation.
The next step is to introduce the tidal field and to

compute the density perturbation that distinguishes the
tidally deformed, rotating star from the unperturbed con-
figuration. Since we are only interested in the value of
gravitoelectric rotational-tidal Love number fo, which is
associated with Eab, we turn off the tidal source’s grav-
itomagnetic contribution by setting Bab ¼ 0. Because the
gravitoelectric part of the tidal field is simply the usual
Newtonian gravitational field, the density perturbation is
therefore the same as in the Newtonian theory of linear
tides—see, for instance, Sec. 2.4 of Ref. [60]. However,

6In terms of notation, kmag
2 ½here� ¼ k̃mag

2 ½LP�. We set their
parameter λ to 1, which represents the irrotational state that we
study here. The fluid quantities in Eq. (A1) are solutions to the
Newtonian equations of structure, Eq. (A3).

7The structure of the tidally deformed, rotating star need not be
determined beyond Newtonian order precisely because we are
only interested in the leading-order relativistic terms in the post-
Newtonian metric. Solving for the structure at 1PN would only
contribute higher-order relativistic terms. This discussion is
complemented by Footnote 8.
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Ref. [60] only solves the problem outside the star, while
here we must solve the internal problem for the tidally
induced density perturbation.
A pure tidal quadrupole field in Newtonian gravity has

the gravitational potential

Utid ¼ −
1

2
Eabxaxb; ðA5Þ

where Eab ≡ −∂abUextð0Þ is a constant STF tensor com-
prising second derivatives (evaluated at the origin) of the
total gravitational potential Uext produced by the tidal
source. The deformation induced in response to Utid is
measured by the well-known Newtonian Love number k2,
and we compute the tidal perturbations δU and δρ of the
body’s gravitational potential and density in terms of this
Love number. Because the perturbations are proportional to
the applied tidal field, for purely quadrupolar linear tides
we write δU ¼ ŨðrÞEq, where Eq ≡ Eabnanb according to
Table II. Poisson’s equation then implies that Ũ satisfies the
ODE

r2
d2Ũ
dr2

þ 2r
dŨ
dr

−
�
6þ 4πr4ρ0

m

�
Ũ ¼ −

2πr6ρ0

m
: ðA6Þ

Outside the star, the solution to this equation is Ũ ¼
−k2R5=r3 [60]. In the interior, Eq. (A6) must be solved
numerically. A local analysis near r ¼ 0 reveals that
Ũ0ð0Þ ¼ Ũð0Þ ¼ 0 is required for regularity. We therefore
solve Eq. (A6) using a shooting method, imposing the
regularity conditions and the continuity of ŨðrÞ and Ũ0ðrÞ
across r ¼ R. The solution automatically determines the
value of the Newtonian Love number, k2 ¼ −ŨðRÞ=R2, as
a consequence of the matching conditions at the stellar
surface.
The density perturbation is given by Eq. (2.218) of

Ref. [60], δρ ¼ −ξj∂jρ ¼ −ξrρ0, where the second equality
follows from the spherical symmetry of the unperturbed
configuration. The radial component of the Lagrangian
displacement vector ξj is determined to be

ξr ¼ r2

Gm

�
Ũ −

r2

2

�
Eq ðA7Þ

via the perturbed Euler equation (see e.g. Eq. (2.214) of
Ref. [60]). The density perturbation is therefore

δρ ¼ −
ρ0r2

Gm

�
Ũ −

r2

2

�
Eq: ðA8Þ

With Eqs. (A4) and (A8), along with the radial density
profile ρðrÞ obtained from Eq. (A3), the relevant part of the
structure of the tidally deformed, rotating star is known up
to order χaEbc. We are now in a position to compute the
contribution of the gravitoelectric rotational-tidal effects to

the post-Newtonian metric outside the star. Since we are
solely interested in the Love number fo, which multiplies
the bilinear potential F o

A (defined in Table II modulo a
hidden factor of c2) in the general-relativistic metric of
Eq. (10), we only keep track of the contributions propor-
tional to F o

a (the Cartesian version of the potential;
F o

A ¼ F o
anaA) in our calculation and we ignore all other

terms. Moreover, it turns out that the gauge transformation
required to properly compare the post-Newtonian and
general-relativistic metrics does not affect the terms
involved in the calculation of fo.
To leading order, the post-Newtonian metric components

are given in quasi-Cartesian coordinates by8

gtt ¼ −1þ 2

c2
U þOðc−4Þ; gta ¼ −

4

c3
Ua þOðc−5Þ;

gab ¼ δab

�
1þ 2

c2
U

�
þOðc−4Þ; ðA9Þ

where U is the Newtonian gravitational potential and
Ua is a vector potential obeying the field equation
∇2Ua ¼ −4πGρva. The tidally induced perturbations to
this metric involve δUa, the bilinear perturbation of the
vector potential, which satisfies

∇2δUa ¼ −4πGðδ1ja þ δ2jaÞ ðA10Þ

with δ1ja ≡ δρva and δ2ja ≡ ρδva. Here, δva is the tidal
perturbation of the velocity field va. The solution to this
equation is the sum of the contributions sourced by each
δija, namely

δiUa ¼ G
Z

δijaðx0Þ
jx − x0j d

3x0: ðA11Þ

Only δ1Ua gives a contribution proportional to F o
a, so δva

is irrelevant for our purposes. Following the techniques
described in Ref. [27], which are crucial for solving
Eq. (A11) analytically, we obtain

δ1Ua ¼ −
4πGc
7

B
r4
F o

a; with

B≡ −
Z

∞

0

ρ0r8

m

�
Ũ −

r2

2

�
dr; ðA12Þ

where we have left out any terms not proportional F o
a.

Therefore, to leading order, the perturbation in the metric
due to gravitoelectric rotational-tidal couplings is

8It can be seen here that post-Newtonian corrections to the
structure, which are of order c−2 according to the post-Newtonian
Euler equation—see e.g. Eq. (8.119) in Ref. [60]—would add
contributions of order c−4 and c−5 to the metric.
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δgta ¼ −
4

c3
δUa ¼

16πG
7c2

B
r4

F o
a: ðA13Þ

To compare this perturbation to the one appearing in the
general-relativistic metric, we must re-express it in quasi-
spherical coordinates; doing so, we obtain

δgtA ¼ δgtaxaA ¼ 16πG
7c2

B
r3
F o

A; ðA14Þ

where xaA ¼ ∂xa=∂θA. We emphasize that this equality
leaves out terms not proportional to F o

A. Comparing
Eq. (A14) to the tA component of the general-relativistic
external metric, Eq. (10), we infer that the radial function
fot ðrÞ multiplying F o

A is

fot ½PN� ¼
16πG
7c2

B
r3

ðA15Þ

in post-Newtonian theory. To determine the Love number
fo, we compare Eq. (A15) to the general-relativistic
expression for fot , given in Table III, in the zero-compact-
ness limit. To leading post-Newtonian order, we find

fot ðrÞ½GR� ¼ −
4G
Mc2

IR5

r3
fo; ðA16Þ

where the moment of inertia I can be calculated via the
Newtonian formula

I ¼ 8π

3

Z
R

0

ρr4dr: ðA17Þ

Equating expressions (A15) and (A16) we obtain the
general expression

fo ¼ 4π

7I
M
R5

Z
R

0

ρ0r8

m

�
Ũ −

r2

2

�
dr ðA18Þ

for the post-Newtonian gravitoelectric rotational-tidal Love
number. In practice, Eq. (A18), along with Eqs. (A3), (A6)
and (A17), must be integrated numerically for a given
barotropic EoS.9

In the special case of an incompressible fluid, the
discontinuity of the density ρ at the stellar surface induces
a jump in the derivative of the potential Ũ at r ¼ R, whose
contribution must be taken into account when matching the
internal and external versions of Ũ. In order to evaluate this

jump, we integrate Eq. (A6) through the stellar surface as
described in Appendix B, obtaining

dŨ
dr

ðRþÞ − dŨ
dr

ðR−Þ ¼ 3

R

�
R2

2
− ŨðRÞ

�
: ðA19Þ

With this correction, the incompressible fluid Love number
fo can be calculated in post-Newtonian theory via the recipe
presented above.
Finally, we identify a mistake made by the authors of

Ref. [27] in their comparison of the post-Newtonian and
general-relativistic versions of the metric: they asserted that
their radial function fo4 reduces to 2ð2GM=c2rÞ6Fo½LP� in
the weak-field limit. However, it should really reduce to
ð2GM=c2rÞ6½2Fo½LP� − ð10=3ÞKel

2 �. Including this miss-
ing term, their post-Newtonian result in Eq. (A2) becomes
fo½LP�≈0.08929, which agrees with our general-relativistic
incompressible fluid results from Fig. 1.

2. Post-Newtonian ko

A post-Newtonian calculation of gravitomagnetic rota-
tional-tidal deformations was performed by Poisson and
Douçot in Ref. [61]. However, the authors were interested
in effects other than the specific value of the gravitomag-
netic rotational-tidal Love number ko, and consequently
they only computed ko for the special case of an n ¼ 1
polytrope. Here, we adapt their calculation to a general
barotropic EoS. Our starting point is Eqs. (6.4), (6.5),
(6.11b), and (7.9) of Ref. [61]. The octupole perturbation
δUl¼3 of the post-Newtonian gravitational potential can be
decomposed in terms of the radial unit vector na as

δUl¼3 ¼ UoðrÞKabcnanbnc: ðA20Þ

This equation involves the bilinear moment Kabc defined
in Table I, along with the post-Newtonian version
of the gravitomagnetic tidal quadrupole moment, Bab ≡
2ϵcdða∂bÞcUext

d ð0Þ. Here, ∂bcUext
a ð0Þ denotes partial deriv-

atives of the vector potential of the tidal source evaluated at
the center of the star. The radial function UoðrÞ has to
satisfy Eq. (7.11) of Ref. [61],

r2
d2Uo

dr2
þ2r

dUo

dr
−
�
12þ4πr4ρ0

m

�
Uo¼ 8π

9c2
r7ρ0

m
: ðA21Þ

This equation is solved outside the star by setting the
derivative ρ0 to zero and picking out the solution decaying
with r, which represents the body’s tidal response.
Doing so, we find that UoðrÞ ¼ αr−4 in the exterior, for
α ¼ constant. In the interior, Eq. (A21) must be solved
numerically. Local analysis at the center reveals that the
regular solution has UoðrÞ ∝ r3 for sufficiently small r.
Equation (A21) can therefore be solved using a shooting
method with boundary conditions that match UoðrÞ and its

9We note that an integration by parts can be performed in
Eq. (A18) to better condition it for numerical integration.
Furthermore, this step allows one to treat the incompressible
fluid in the same way as the other EoSs by eliminating the factor
of ρ0, which is singular at r ¼ R for a body of uniform density. In
all cases, the boundary terms vanish unequivocally since the
boundaries of integration originating from Eq. (A12) extend over
the whole spatial domain.
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first derivative to the external solution at r ¼ R. With the
matching value UoðRÞ at hand, Eq. (A20) can be compared
at r ¼ R to the octupole perturbation δUl¼3

eff inferred from
the general-relativistic external metric in the weak-field
limit,

δUl¼3
eff ¼ −

2

c2

�
2GM
c2

�
5

Ko I
Mr4

Kabcnanbnc; ðA22Þ

cf. Eq. (A4) in Ref. [61]. Here, I is the Newtonian moment
of inertia. Equating the post-Newtonian and general-
relativistic perturbations, we solve algebraically for the
post-Newtonian value of the Love number ko and find

ko ¼ Mc2UoðRÞ
2IR

: ðA23Þ

As in the calculation for fo, the discontinuity of the
incompressible fluid density distribution at the stellar
surface induces a jump in the derivative of the potential
Uo at r ¼ R. The jump is found by integrating Eq. (A21)
through the stellar surface as described in Appendix B; this
yields

dUo

dr
ðRþÞ − dUo

dr
ðR−Þ ¼ −

3

R

�
UoðRÞ þ 2R3

9c2

�
: ðA24Þ

With this correction, the incompressible fluid Love number
ko can be calculated in post-Newtonian theory via the recipe
presented above.

APPENDIX B: INCOMPRESSIBLE
FLUID MODEL

In this appendix, we adapt the recipe of Sec. III for
computing the Love numbers to the case of an incom-
pressible fluid. Though the model itself is unphysical, we
expect its Love numbers to bound those of other barotropic
EoSs from above10: one can view the incompressible fluid
as the n → 0 limit of the polytropic models.
In principle, one can employ the method described in

Sec. III E to compute the Love numbers associated with any
barotropic EoS. However, the implementation of this
method turns out to require special care for an incom-
pressible fluid. We examine the subtleties related to this
case below; our treatment of the gravitoelectric tidal Love
number is essentially the same as that of Refs. [7,65,66],
and we take a similar approach in the novel case of the
rotational-tidal Love numbers.
The incompressible fluid model has a constant rest mass

density ρ� > 0 inside the star, which abruptly drops to zero

outside. Hence, its density profile is ρðrÞ ¼ ρ�ΘðR − rÞ,
where Θ denotes the Heaviside step function. In this case,
the first law of thermodynamics written as dμ ¼ hdρ,
where h is the fluid’s enthalpy, implies that the total energy
density μ is some constant μ� in the interior of the star, so it
can be expressed as

μ ¼ μ�ΘðR − rÞ: ðB1Þ

The total mass of the star is thenM ¼ 4πμ�R3=3 by Eq. (7).
Evidently, the radial derivative of the total energy density
is singular at the surface of the star. This implies that
radial derivatives of other metric and fluid variables will be
generically singular at r ¼ R. In particular, some of the
radial functions which appear in the metric Ansatz Eq. (10)
and are directly related to the Love numbers have a
discontinuous first derivative at the surface.
Let us focus first on the gravitoelectric sector. In order

to compute Kel
2 and Fo using the method described in

Sec. III E 1, we have to integrate Eqs. (16)–(18) in the
interior of the star. The presence of the singular derivative
dμ=dp in Eqs. (17) and (18) induces derivative disconti-
nuities of the radial functions eqtt and fot at the stellar surface,
although the functions themselves remain continuous as
required by the matching conditions on the spacetime at
r ¼ R. Thus, corrections due to such discontinuities need to
be taken into account in the integration of eqtt and fot . In order
to evaluate these discontinuities, we integrate Eqs. (17) and
(18) from R− ≡ R − ε to Rþ ≡ Rþ ε, where ε > 0, and we
take the limit ε → 0. In both cases, we get nonvanishing
integrals involving terms of the form ζðrÞðμþ pÞðdμ=dpÞ
for some radial function ζðrÞ. Differentiating Eq. (B1) and
using the TOV equation, Eq. (9), we find

Z
Rþ

R−
ζðrÞðμþ pÞ dμ

dp
dr ¼

Z
Rþ

R−
ζðrÞr2f μ�δðr − RÞ

mþ 4πr3p
dr

¼ ζðRÞR2fðRÞμ�=M: ðB2Þ

With the latter result at hand, we obtain the derivative jumps

deqtt
dr

ðRþÞ − deqtt
dr

ðR−Þ ¼ −
3

R
eqttðRÞ; ðB3Þ

dfot
dr

ðRþÞ−dfot
dr

ðR−Þ¼−3Re−2ψðRÞ½ωðRÞþ1�eqttðRÞ ðB4Þ

from Eqs. (17) and (18). For completeness, we note that the
absence of the singular term dμ=dp in Eq. (16) prevents any
discontinuity in dω=dr, and thus no jump correction needs
to be incorporated in the integration of that equation.
Next, in order to compute the scaled gravitomagnetic

Love numbers Kmag
2 andKo following the method described

in Sec. III E 2, we need to integrate Eqs. (19)–(21) in the
interior of the star. As in the case of Eq. (16), no correction is
needed in the integration of Eq. (19). However, in principle,

10The incompressible fluid does not provide the lowest upper
bound on the Love numbers by any means. Finer upper bounds
using the most extreme NS EoS [62] compatible with causality
have been investigated in Refs. [63,64].
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one has to account for derivative jumps in the functions kotr1
and kott. We evaluate these jumps by integrating Eqs. (20)
and (21) from R− to Rþ, taking the limit ε → 0. The new
singular terms are either of the form

ζðrÞ dμ
dp

kotr1 or ζðrÞ dμ
dp

dkotr1
dr

: ðB5Þ

In order to evaluate their integrals across the stellar surface,
we recall the fact that kotr1 ¼ 0 for r ≥ R, so we can always
replace kotr1 by kotr1ΘðR − rÞ independently of its explicit
functional form in the interior. The same argument applies
to the derivative dkotr1=dr and the pressure p, so that
we can also write dkotr1=dr ¼ ðdkotr1=drÞΘðR − rÞ and
μþ p ¼ ðμ� þ pÞΘðR − rÞ. This technical artifice leads
to cancellations of Heaviside functions in the singular terms.
Thus, differentiation of Eq. (B1) and substitution of dp=dr
from Eq. (9) lead to

Z
Rþ

R−
ζðrÞ dμ

dp
kotr1dr

¼
Z

Rþ

R−
ζðrÞr2f μ�δðr − RÞ

ðμ� þ pÞðmþ 4πr3pÞ k
o
tr1dr

¼ ζðRÞR2fðRÞkotr1ðRÞ=M; ðB6Þ

and likewise for the integral of the singular term involving
the derivative dkotr1=dr. By virtue of the continuity of the
function kotr1 in r ¼ R, and the fact that kotr1ðRÞ ¼ 0, from
Eq. (20) we obtain the derivative jump

dkotr1
dr

ðRþÞ−dk
o
tr1

dr
ðR−Þ¼−

Z
Rþ

R−
δðr−RÞdk

o
tr1

dr
dr: ðB7Þ

From the exterior solution we know that dkotr1=dr ¼ 0 at
r ¼ R; thus, continuity of dkotr1=dr across the surface is
sufficient to satisfy Eq. (B7). We therefore conclude that no
jump corrections are needed in the integration of Eq. (20).
Similarly, when Eq. (21) is integrated across the surface, we
get the derivative discontinuity

dkott
dr

ðRþÞ − dkott
dr

ðR−Þ ¼ 1

R
½2ð2ωðRÞ − 3Þbqt ðRÞ − 3kottðRÞ�:

ðB8Þ

With the addition of these jump corrections, the set of Love
numbers fKel

2 ; K
mag
2 ;Fo;Kog can be computed for an

incompressible fluid by following the method described
in Sec. III E.

APPENDIX C: QUADRUPOLE
ROTATIONAL-TIDAL LOVE NUMBERS

Two kinds of scaled quadrupole rotational-tidal Love
numbers are alluded to in this paper: the l ¼ 2 Love
numbers that arise from couplings between the NS spin and

the tidal quadrupole moments Eab;Bab, which we may call
Eq and Bq following prior work [27–29]; and the l ¼ 2
Love numbers that are associated with couplings between
the NS spin and the tidal octupole moments Eabc;Babc,
which we referred to as Fq and Kq in Sec. VI. The latter
were studied by Pani, Gualtieri and Ferrari in Ref. [26], but
were omitted in this work. The former were found by
Landry [28] to possess a universal value of 1=120 for
material bodies, independently of the EoS.
In this appendix, we clarify the nature of the scaled

quadrupole rotational-tidal Love numbersEq,Bq generated
by the external tidal quadrupole. The scaled Love number
Eq is associated with the bilinear quadrupole moment
Êab ≡ 2χcϵcdðaEd

bÞ introduced in Ref. [27]. This bilinear
moment makes its appearance in the metric Ansatz of
Eq. (10) through the scalar potential Êq ≡ Êabnanb defined
in Table II. According to Ref. [27], an equivalent expres-
sion for the potential is

Êq ¼ −χ∂ϕEq: ðC1Þ

Let us consider the effect on Eq. (C1) of a shift

ϕ → ϕ − κχ ðC2Þ

in the angular coordinate ϕ, where κ is an arbitrary
parameter. To first order in χ, this corresponds to a change

Eq → Eq þ κÊq ðC3Þ

in the tidal potential. The effect of this shift on the external
metric Ansatz, Eq. (4.4) of Ref. [27], is to take

êqtt → êqtt − κeqtt; ðC4Þ

êqrr → êqrr − κeqrr; ðC5Þ

êq → êq − κeq: ðC6Þ

As can be seen from the expressions for the radial functions
given in Table IV of Ref. [27], this amounts to a shift

Eq → Eq − κKel
2 ðC7Þ

in the Love number. Hence, Eq is gauge-dependent, and
can be adjusted to make êqtt; ê

q
rr and êq vanish. In the Regge-

Wheeler gauge, this is achieved by setting Eq ¼ 1=120, as
dictated by the interior solution [28].
The shift (C2) also produces a change in B̂q

A ≡
ϵabcnbB̂

c
dndnaA ¼ −χ∂ϕB

q
A, where the bilinear tidal

moment is B̂ab ≡ 2χcϵcdðaBd
bÞ. The net effect is to shift

the scaled Love number
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Bq → Bq − κKmag
2 : ðC8Þ

Once κ has been selected to set Eq to a desired value, the
gauge freedom in ϕ is exhausted, and Bq acquires a
physical meaning: Landry has shown that it reflects the
presence of an r-mode in the star.
Since we have demonstrated that the specific values of

Eq and Bq are gauge-dependent, we conclude that they are
not true scaled Love numbers. Rather, Eq is a gauge
constant associated with the freedom to shift the angular
coordinate ϕ; fixing this freedom sets the value ofBq up to
a residual physical dependence on internal r-modes. The
point is that the couplings between χa and Eab, Bab produce
only two actual scaled rotational-tidal Love numbers, Fo

and Ko, not four as was claimed by Refs. [27–29]. Finally,
although this argument is formulated in the Regge-Wheeler
gauge, we remark that a similar argument holds in the light-
cone gauge [49] employed in Sec. III of Ref. [27].

APPENDIX D: COMPARISON WITH PANI,
GUALTIERI AND FERRARI

In this appendix, we derive the mappings between our
scaled Love numbers Kel

2 , K
mag
2 , Fo, Ko and their equiv-

alents in Ref. [26]. A subset of these relations appeared
without a detailed derivation in Ref. [28]. They permit us to
compare our quantitative results with those of Ref. [26], as
we do in Sec. IV.
Our Love numbers are defined as integration constants

associated with decaying solutions in the exterior metric
[27]. The Love numbers of Ref. [26] are defined in terms of
derivatives of induced multipole moments with respect to
tidal moments. Nonetheless, the expressions obtained by
Pani, Gualtieri and Ferrari ultimately involve metric com-
ponents with integration constants of their own: their scaled
tidal Love numbers are

λ̃ð2ÞE ¼ 2γ2ffiffiffiffiffiffi
5π

p
α2

; λ̃ð2ÞM ¼ γ�2
480α�2

ðD1Þ

and their scaled rotational-tidal Love numbers are

δλ̃ð32ÞM ¼ 44
ffiffiffiffiffi
35

p
γ2 þ 21γ32

28
ffiffiffiffiffiffi
7π

p
α2

; δλ̃ð32ÞE ¼ −γ�32=α�2: ðD2Þ

The constants α2, α�2, γ2, γ
�
2, γ32, γ

�
32 can be read off the

perturbations (22)–(27) of Ref. [26]. Rather than relating
our Love numbers explicitly to multipole moments, we
choose to compare coordinate expressions for the
metric and directly identify the constants appearing in
Eqs. (D1)–(D2). In general, this would require a trans-
formation of the metric, but fortunately both works employ
Boyer-Lindquist ðt; r; θ;ϕÞ coordinates and the Regge-
Wheeler gauge.

The exterior solution of Ref. [26] is obtained by
supplementing its background metric (9) with the pertur-
bations (21)–(26) of that paper.11 Because Pani, Gualtieri
and Ferrari restrict themselves to axisymmetric perturba-
tions, we specialize our Ansatz (10) to axisymmetry by
dropping the terms with hatted potentials. We then compare
the metric components order-by-order in a perturbative
expansion, beginning with the background (which, for the
purposes of this appendix, we take to include the rotation).
A trivial identification of the coordinates, and the relations
eν → f, M → M, ω → Ωð1 − ωÞ, bring their background
metric into the same form as ours.
The gravitoelectric tidal perturbations appear in the

diagonal components of the metric. In Ref. [26], the tt

component of the perturbation is δgtidtt ¼ eνHð2Þ
0 Y20, where

Ylmðθ;ϕÞ denotes a spherical harmonic and

Hð2Þ
0 ¼ α2yðy − 2Þ þ γ2

�
−3þ 1

2 − y
−
1

y
þ 3y

þ 3

2
ðy − 2Þy ln ð1 − 2yÞ

�
ðD3Þ

with y≡ r=M.12 Our corresponding metric perturbation is
δgtidtt ¼ eqttEq. The exterior solution for eqtt is given in
Table III, and we may expand the tidal potential in spherical
harmonics as Eq ¼ P

mE
q
mYlm [27]. Setting the two per-

turbations equal, we find that

α2 ¼ 4

ffiffiffi
π

5

r
M2Eq

0; γ2 ¼ −32
ffiffiffiffiffiffi
5π

p
Kel

2M
2Eq

0: ðD4Þ

These relations imply the mapping

λ̃ð2ÞE ¼ −16
ffiffiffi
5

π

r
Kel

2 ðD5Þ

for the scaled gravitoelectric Love number. One can verify
that with these associations the rr and AB components of
the gravitoelectric tidal perturbation also match exactly.
The gravitoelectric rotational-tidal perturbation appears

only in the tA components of the metric. The octupole

deformation is given as δgl¼3
tA ¼ δhð3Þ0 X30

A in Ref. [26];
Xlm
A ¼ ð−∂ϕYlm= sin θ; sin θ∂θYlmÞ is an odd-parity vec-

tor spherical harmonic and

11Equations (22)–(27) of Ref. [26] are the components
relevant for this discussion, but the full metric perturbation
can be found in Appendix A of that paper. In practice, we
make use of the perturbed metric provided as a MATHEMATICA ®
notebook in the Supplemental Material to Ref. [26] at http://link
.aps.org/supplemental/10.1103/PhysRevD.92.124003.

12There appears to be a misprint in the sign of the second term
in Eq. (21) in the published version of Ref. [26]. The sign given
here matches that found in the Supplemental Material.
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δhð3Þ0 ¼ −
Mχ

6720y2

�
−128

ffiffiffiffiffi
35

p
yð5y − 4Þα2 − 3

�
8

ffiffiffiffiffi
35

p �
16þ 44y − 90y2 − 270y3 þ 945y4 − 405y5

− yð64 − 80yþ 1080y3 − 1350y4 þ 405y5Þtanh−1 1

1 − y

�
γ2

þ 35yð8þ 20yþ 60y20 − 210y3 þ 90y4 þ 15y3ð8 − 10y2 þ 3y2Þ ln ð1 − 2=yÞÞγ32
��

: ðD6Þ

Since α2 and γ2 are known from Eq. (D4), γ32 is the
only undetermined parameter. Our equivalent metric per-
turbation is δgl¼3

tA ¼ fotF o
A, with fot given in Table III and

F o
A ¼ 1

5
χEq

0X
30
A in axisymmetry [27]. The comparison

yields

γ32 ¼
128

5

ffiffiffi
π

7

r �
275

3
Kel

2 þ 28Fo

�
M2Eq

0; ðD7Þ

and with this association the l ¼ 3 gravitoelectric rota-
tional-tidal perturbations agree. It then follows that the
scaled gravitoelectric rotational-tidal Love numbers are
related by the first of the mappings in Eq. (25). This relation
matches the one introduced in Ref. [28], after taking into
account our redefinition of Fo.
We proceed in a similar fashion in the gravitomagnetic

sector. The tidal perturbation appears exclusively in the tA
component of the metric, and equating our expression
δgtidtA ¼ bqtB

q
A ¼ bqtB

q
0X

20
A with that of Ref. [26], δgtidtA ¼

hð2Þ0 X20
A , we identify

α�2¼−
4

3

ffiffiffi
π

5

r
M2Bq

0; γ�2¼−128
ffiffiffiffiffiffi
5π

p
Kmag

2 M2Bq
0: ðD8Þ

These relations imply that the scaled gravitomagnetic Love

number λ̃ð2ÞM of Ref. [26] is identical to our Kmag
2 . The

rotational-tidal perturbations appear in the tt, rr and AB
components of the metric. One can show that they all agree
when the assignment

γ�32 ¼ −
192

5

ffiffiffiffiffiffi
7π

p
KoM2Bq

0 ðD9Þ

is made, based on the equivalence of our δgl¼3
tt ¼ kottKo ¼

kott
3
5
χBq

0Y
30 and δgl¼3

tt ¼ eνδHð3Þ
0 Y30 of Ref. [26]. This

association implies that the second mapping given in
Eq. (25) relates the scaled gravitomagnetic rotational-tidal
Love numbers.
By similar identifications, one can also match the dipole

rotational-tidal perturbations, which contain gauge con-
stants rather than Love numbers. Applying the relations
derived above, it is straightforward to verify that the
exterior metric of Ref. [26] is completely identical to
Eq. (10) in axisymmetry. Ultimately, our Love number
definitions differ only from those of Pani, Gualtieri and
Ferrari by the purely conventional multiplicative factors
which we have worked out here.
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