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We consider the dynamics of a spherically symmetric massless scalar field coupled to general relativity
in anti–de Sitter spacetime in the small-amplitude limit. Within the context of our previously developed two
time framework (TTF) to study the leading self-gravitating effects, we demonstrate the existence of two
new conserved quantities in addition to the known total energy E of the modes: The particle number N and
Hamiltonian H of our TTF system. Simultaneous conservation of E and N implies that weakly turbulent
processes undergo dual cascades (direct cascade of E and inverse cascade of N or vice versa). This partially
explains the observed dynamics of 2-mode initial data. In addition, conservation of E and N limits the
region of phase space that can be explored within the TTF approximation and, in particular, rules out
equipartition of energy among the modes for general initial data. Finally, we discuss the possible effects of
conservation of N and E on late time dynamics.
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I. INTRODUCTION

We are interested in the question of stability of anti–de
Sitter (AdS) spacetime in general relativity. Do small
perturbations generically collapse to a black hole or do
they propagate forever? In contrast to Minkowski space-
time, field perturbations of AdS are effectively confined by
the asymptotically AdS boundary condition and cannot
dissipate by dispersing to null infinity. Thus, even for
arbitrarily small perturbations, self-interactions eventually
play a dominant role in the dynamics, and the question of
collapse is much more difficult.
In order to make the problem more tractable, we restrict

to spherically symmetric perturbations. A real, minimally
coupled, free, massless scalar field (coupled to gravity) is
studied to provide a dynamical degree of freedom. This
system was first treated numerically in AdS4 in [1] (for the
non-spherically symmetric gravitational case, see Ref. [2],
and for the complex scalar field, see Ref. [3]). The authors
of Ref. [1] considered initial data with a Gaussian profile,
and they varied the amplitude of the initial pulse. For
sufficiently large pulse amplitude, they found that black
hole collapse occurs promptly, consistent with expectations
in asymptotically flat spacetimes. Moreover, collapse is no

longer prompt once the amplitude is decreased below a
critical threshold [4]. Instead, the pulse propagates to
infinity, and then is reflected back by the AdS boundary.
Once it reaches the origin, it has another opportunity to
collapse to a black hole. This time, however, gravitational
focusing has caused the pulse to become more peaked, and
the chance of collapse is increased. As the amplitude is
decreased further, multiple bounces may be required before
collapse. Reference [1] found that collapse always occurred
even for very small-amplitude initial data, albeit after a very
large number of bounces. This behavior motivated the
conjecture that collapse to a black hole was unavoidable in
AdS regardless of the initial perturbation and its strength
(except for single-mode initial data [1,5]).
The observed behavior is a manifestation of a weakly

turbulent cascade, where energy is transferred to short
distance scales through gravitational focusing. A free,
nongravitating, spherically symmetric, real scalar field in
AdS4 is characterized by1 a set of normal modes ejðxÞ
(j ¼ 0; 1; 2;…), with frequencies ωj ¼ 2jþ 3. In mode-
space, the cascade corresponds to a transfer of energy to
high-frequency modes. Since the frequency spectrum is
commensurate, the nonlinear gravitational interactions are
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1Adding a mass or changing the spacetime dimension does not
significantly alter this statement. The mode functions and
frequencies change, but the frequencies remain linear in j.
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resonant, which means energy is transferred between
modes quite readily.
This picture was complicated, however, by subsequent

numerical simulations [6] that showed that if the Gaussian
pulse profile was broadened (within a certain range), there
was a critical amplitude, below which collapse was no
longer seen. It was argued that there was a nonlinear field
dispersion process that competes with the gravitational
focusing. Thus, if dispersion dominates, then collapse can
potentially be averted. The problem was thus more com-
plicated than originally thought. Because of the intrinsic
limitations of finite, numerical simulations, it demands a
more comprehensive perturbative analysis.
In previous work [7], we analyzed the leading resonant

interactions in a two-timescale analysis. We introduced a
slow time τ≡ ϵ2t, and expanded the scalar field as
ϕðt; xÞ ¼ ϵϕð1Þðt; τ; xÞ þOðϵ3Þ (similar expansions apply
for the metric). The general solution to the leading-order
scalar field equation is

ϕð1Þðt; τ; xÞ ¼
X∞
j¼0

ðAjðτÞe−iωjt þ ĀjðτÞeiωjtÞejðxÞ; ð1Þ

where the functions AjðτÞ are—at this point—
undetermined. Were we to not introduce the slow time,
Aj would be constant, and the resonant self-gravity
interactions would lead to secular growths and a breakdown
of perturbation theory atOðϵ3Þ [1]. However, as we showed
in [7], the secular growths can be eliminated if we choose
the mode amplitudes to satisfy the “two time framework”
(TTF) equations,

−2iωj
dAj

dτ
¼

X
klm

SðjÞ
klmĀkAlAm; ð2Þ

where the SðjÞ
klm are (real) numerical coefficients arising

from overlap integrals of mode functions. (We computed
the coefficients up to j ¼ jmax ¼ 47.) The TTF equations
capture (a) the effect of ϕ on the metric gab, and (b) the
backreaction of gab on ϕ. In other words, ϕ can only self-
interact via gab as an intermediary, and for this reason the
TTF equations have cubic interactions.2

The specific form of the equations (2) follows from the
fact that the only resonances that are actually present in our
system are those such that

ωj þ ωk ¼ ωl þ ωm: ð3Þ
Indeed from the basic structure of the Einstein-scalar
field equations, it is a priori possible to have resonances

satisfying ωj � ωk ¼ �ωl � ωm for arbitrary sign combi-
nations, and this would introduce additional terms on the
right-hand side of (2) (e.g., ĀkĀlAm, etc.). However, we
found [7] that in practice the only nonzero terms are those of
(2) (see also [1]). This statementwas rigorously proven in [9].
We argued in [7] that solutions to the TTF equations

provide a good approximation to solutions of the full
system in the limit ϵ → 0 and for time scales t ∼ 1=ϵ2. By
solving the system of coupled ordinary differential equa-
tions (2), one can study, e.g., the transfer of energy EjðτÞ ¼
4ω2

j jAjðτÞj2 between the modes—without having to con-
sider the rapid normal-mode harmonic oscillations. We
checked previously that, while EjðτÞ can have very non-
trivial time dependence, the sum E≡P

jEj is conserved.
As we will describe in Sec. II, there are two additional

quantities that are conserved by the system of TTF
equations.3 The first,

N ≡X
j

4ωjjAjj2; ð4Þ

can be interpreted as the “particle number” of the field. In
terms of spacetime fields, this is the charge current of the
positive frequency part of ϕ. (Since ϕ is real, the charge
current of the field itself vanishes.) The second additional
conserved quantity is the Hamiltonian function H of our
TTF system (2). This quantity is quartic in Aj and appears to
represent the interaction energy of the TTF fields. All three
quantities (N, E andH) are only well defined and conserved
at the perturbative level captured by TTF, and it is not clear to
what degree they extend to the fully nonlinear theory.
In Sec. III, we describe how the presence of multiple

conserved quantities (as opposed to solely the energy)
implies that the turbulent dynamics must be more complex
than originally thought [1]. This is well known, for
example, in the context of incompressible, inviscid two-
dimensional hydrodynamics, where the existence of a
second conserved quantity induces an inverse cascade of
energy, in contrast to the standard direct energy cascade in
higher dimensions [10,11]. Likewise, in the TTF system
(2), conservation of E and N implies that the energy cannot
all be transferred to high-j modes, as this would violate
conservation of N. As higher-frequency modes have higher
energy per particle, a given amount of energy gives rise to a
lower population of particles. To conserve particle number
as energy transfers to high modes, lower modes must also
become more populated—an effect we have previously
observed for 2-mode initial data [7]. Thus, if there is a
direct cascade of E, there must simultaneously be an
inverse cascade of N and vice versa. We, therefore, have
an alternative explanation for the process of competing
dispersion and focusing described in [6].2TTF is universal when Einstein gravity is replaced with

Gauss-Bonnet gravity [8]; however, it does require intrinsic self-
interactions of the scalar field(s) to be subleading compared to
gravitationally induced self-interactions.

3These properties apply also for massive fields and in different
dimensions, since the structure of the TTF equations is the same.
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Finally, in Sec. IV we explore the implications of
conservation laws on possible end states of evolution.
Simultaneous conservation of N and E excludes certain
regions of phase space and, in particular, generically, does
not allow for energy equipartition. Instead, one can use
N and E conservation to associate our initial data to recently
uncovered quasiperiodic solutions [7]. In particular, if a
given solution lies sufficiently close to its associated
quasiperiodic solution, then it is really a perturbation about
that solution. It follows that if the solution lies within the
radius of stability of the quasiperiodic solution, then it cannot
collapse. This is a generalization of the claim that broad
Gaussian initial data is “close” to stable time-periodic
solutions [12]. An alternative possibility is that a non-
collapsing behavior can be described by stochasticity among
the stable basins of these quasiperiodic solutions [13] as
argued by Ref. [14] for the Fermi-Pasta-Ulam problem [15].
In this paper we follow the notation and definitions of [7].

We note that aswewere preparing thismanuscript, a separate
work also identified the new conserved quantities [16]
within the perturbative resummation technique presented
in [9] (see also [17] for the case of a nongravitating probe
scalar). As discussed in [9], the equations ofmotion obtained
to third order are identical to those from the TTF approach.

II. CONSERVED QUANTITIES

A. Total mode energy and total particle number

By using the TTF equations (2) and the specific

coefficients SðjÞ
klm we derived up to j ¼ jmax ¼ 47, it

is easy to check directly that E ¼ P
j4ω

2
j jAjj2 and

N ¼ P
j4ωjjAjj2 are conserved in time (up to j ¼ jmax).

(We did this for E in [7], and this was also how we first
identified N.) However, the conservation laws are more
general in that they follow simply from the symmetry

properties of SðjÞ
klm (and not the specific values of these

coefficients), as we will show below.
Because of its similarity to expressions in quantum field

theory, we interpret the quantity N as the total “particle
number.” However, we note that this is a continuous
system, and there are no discrete particles.

1. Derivation

To proceed, we assume only certain basic symmetry
properties, which hold4 for the coefficients SðjÞ

klm,

(i) SðjÞ
klm ¼ SðkÞ

jlm,

(ii) SðjÞ
klm ¼ SðjÞ

kml,

(iii) SðjÞ
klm ¼ SðlÞ

mjk,

(iv) SðjÞ
klm ¼ 0 unless jþ k ¼ lþm.

Given symmetries (i)–(iii), we now show that conservation
of E is precisely equivalent to (iv). The latter reflects the
resonance condition (3). Conservation of N follows auto-
matically from (i)–(iii) alone.
We first note that, as a result of (2),

d
dτ

jAjj2 ¼ Āj
dAj

dτ
þ Aj

dĀj

dτ

¼ i
2ωj

X
klm

SðjÞ
klmðĀjĀkAlAm − AjAkĀlĀmÞ

¼ 1

ωj

X
klm

SðjÞ
klmℑðAjAkĀlĀmÞ: ð5Þ

Conservation of E and N are then

0 ¼ dE
dτ

¼
X
jklm

4ωjS
ðjÞ
klmℑðAjAkĀlĀmÞ; ð6Þ

0 ¼ dN
dτ

¼
X
jklm

4SðjÞ
klmℑðAjAkĀlĀmÞ ð7Þ

for all possible values of the Aj.
Consider the energy E first. We look at the contribution

of terms with particular choices of indices.

Case 1. j; k; l; m all identical
We have ℑðAjAkĀlĀmÞ ¼ ℑðjAjj4Þ ¼ 0, so this
type of term does not contribute, and the right-
hand side of (6) vanishes automatically, im-

posing no constraints on the coefficients SðjÞ
klm.

Case 2. j ¼ l ¼ m; k distinct
Imposing the symmetries (i)–(iii), terms with
these particular indices contribute

dE
dτ

⊃ 8ωjS
ðjÞ
jjkℑðA2

j ĀjĀkÞ

þ 4ðωj þ ωkÞSðjÞkjjℑðAjAkĀ2
jÞ

¼ 4ℑðA2
j ĀjĀkÞ½2ωjS

ðjÞ
jjk − ðωj þ ωkÞSðjÞkjj�:

ð8Þ

This vanishes if (iv) holds.
Conversely, assume that E is conserved. The
right-hand side of (6) must vanish for all values

4For j; k; l; m pairwise distinct (e.g., j; k; l; m ¼ 0; 1; 0; 1)
symmetries (i) and (iii) only hold in the gauge where the metric
function δ ¼ 0 at the AdS boundary. This gauge was used in
[3,16], whereas [1,7,9] set δ ¼ 0 at the origin. (For 1, 3 or 4
distinct indices, SðjÞklm satisfies all the symmetries above in both
gauges). Since the symmetries are needed in Sec. II B to write
down a Hamiltonian formulation, we therefore assume we are
working in the gauge where δ ¼ 0 at the AdS boundary. See [16]
for further discussion of this point.
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of the Aj’s. Now setting only Aj, Ak to be

nonzero implies SðjÞjjk ¼ SðjÞkjj ¼ 0.

Case 3. j ¼ l, k ¼ m distinct
This contributes

dE
dτ

⊃ 4ℑðA2
j Ā

2
kÞ½ωjS

ðjÞ
jkk − ωkS

ðkÞ
kjj�: ð9Þ

Since ωj ≠ ωk, (iv) here is equivalent to the
vanishing of this contribution, as above.

Case 4. j ¼ m; k; l distinct
The symmetries imply that the contribution to
dE=dτ is

dE
dτ

⊃ 4ℑðA2
j ĀkĀlÞSðjÞ

jkl½2ωj − ðωk þ ωlÞ�:
ð10Þ

Vanishing of the multiplier implies either

SðjÞ
jkl ¼ 0 or 2ωj ¼ ωk þ ωl.

Case 5. j; k; l; m all distinct
In this last case, the contribution is

dE
dτ

⊃8fℑðAjAkĀlĀmÞSðjÞ
klmðωjþωk−ωm−ωlÞ

þℑðAjAlĀkĀmÞSðjÞ
lkmðωjþωl−ωk−ωmÞ

þℑðAjAmĀkĀlÞSðjÞ
mklðωjþωm−ωk−ωlÞg:

ð11Þ

Since the coefficients containing the Aj’s can
be made to be nonzero independently, we again
see the equivalence of symmetry (iv) and the
vanishing of the term.

Thus, it follows that conservation of E is precisely
equivalent to condition (iv), given (i)–(iii). Conservation
of N can be analyzed by replacing all ωj’s in the expressions
above by 1. All terms then vanish by (i)–(iii). □

2. Discussion

From a spacetime perspective, conservation of N and
E is somewhat surprising. Indeed, E is not the total
energy of the system, as it neglects interaction energy.
Meanwhile, our scalar field is real so we do not expect
any sort of associated charge N. What this TTF analysis
shows is that at a low (but nonlinear) perturbative order,
and for times t ∼ 1=ϵ2, these quantities are in fact
conserved.

To see how N and E arise as spacetime quantities,
consider a treatment of ϕ at the linear level. It should be
kept in mind that at the linear level, there is no exchange
of energy between modes, so conservation of N and E is
trivial. Nevertheless, this treatment is useful as there is a
precise correspondence between our definitions of E and
N and spatial integrals of field quantities. Indeed, at this
order, E is just the spatial integral of the time-time
component of the stress energy of ϕð1Þ, living in an exact
AdS background,

E ¼
Z

π=2

0

ðj∂tϕ
ð1Þj2 þ j∂xϕ

ð1Þj2Þtan2xdx: ð12Þ

Plugging in the expression (1) with each
AjðτÞ ¼ constant, we recover the standard mode sum
expression for E.
For the particle number, split the field into positive and

negative frequency parts, ϕð1Þ ¼ ϕð1Þ
þ þ ϕð1Þ

− , with

ϕð1Þ
þ ¼

X
j

Aje−iωjtejðxÞ: ð13Þ

The positive frequency part of ϕð1Þ is a complex field,
so one can define its charge current. One may verify
that the integral of its time component is the particle
number,

N ¼ 2i
Z

π=2

0

ðϕð1Þ
þ ∂tϕ

ð1Þ
þ − ϕð1Þ∂tϕ

ð1Þ
þ Þtan2xdx: ð14Þ

Beyond linear order, it is not obvious how to define the
positive frequency part of the field, nor is it obvious that N
and E are conserved from a spacetime perspective.
Fortunately, TTF provides a way to perturbatively define
quantities that are conserved.

B. Hamiltonian

In addition, the TTF system is Hamiltonian. To see this,
we first rescale our fields by defining Âj ¼ ffiffiffiffiffi

ωj
p Aj. Then

the Hamiltonian takes the form

H ¼ −
1

4

X
jklm

SðjÞ
klmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωjωkωlωm
p ¯̂Aj

¯̂AkÂlÂm: ð15Þ

It may be verified that Hamilton’s equations,

i
dÂi

dτ
¼ ∂H

∂ ¯̂Ai

; ð16Þ

reproduce the equations of motion (2). Indeed, Hamilton’s
equations give
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− 2iωi
dAi

dτ

¼ − 2i
ffiffiffiffiffi
ωi

p dÂi

dτ

¼ − 2i
ffiffiffiffiffi
ωi

p ∂H
∂ ¯̂Ai

¼
ffiffiffiffiffi
ωi

p
2

X
jklm

SðjÞ
klmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωjωkωlωm
p ðδij ¯̂AkÂlÂm þ ¯̂Ajδ

i
kÂlÂmÞ

¼
X
jkl

SðiÞ
jklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωjωkωl
p ¯̂AjÂkÂl

¼
X
jkl

SðiÞ
jklĀjAkAl: ð17Þ

[On the second last line we used the symmetry property (i)

of SðjÞ
klm.] H, itself, is thus a conserved quantity.

It may be tempting to try to associate the Hamiltonian
with the next-order contribution to the Arnowitt-Deser-
Misner (ADM) mass M of the spacetime. (Note that H
itself is not the total energy because we have performed
a two-time expansion to factor out the fast time.)
Indeed, the ADM mass is a conserved quantity in
general relativity, and it includes all of the kinetic
and potential energy in the field ϕ, as well as the
metric. The energy E, by contrast, only contains the
energy of ϕ to quadratic order, while the expression (15)
for H certainly looks like a potential energy that could
be the fourth order contribution to M. However, one
would also expect additional contributions to M at
quartic order, such as contributions from higher order
TTF corrections (involving additional slower time
variables). Further analysis would therefore be required
to elucidate any relationship between H and the
ADM mass.
It is somewhat surprising that E and H are conserved

independently. This could simply be an unphysical
artifact of our expansion, or it could be indicative of
a whole family of higher order conserved quantities,
which would indicate integrability of the system. It may
be illuminating to numerically monitor the behavior of
E and H within the fully nonlinear system, at least over
time scales where we expect validity of TTF (t ∼ 1=ϵ2).

III. DUAL CASCADE

For the remainder of this paper, we restrict our
analysis to examining the implications of simultaneous
conservation of E and N. Within the context of
turbulence, the presence of a second conserved quantity
(in addition to the energy) indicates the occurrence of
dual cascades. That is, if one quantity is cascading to
higher modes, the other must be simultaneously cascad-
ing to low modes. As noted in the introduction, this has

been observed, for instance, in inviscid incompressible
two-dimensional fluid dynamics,5 where the enstrophy
Ω (the integral of the vorticity squared) is conserved in
addition to the energy E. It can be shown that enstrophy
undergoes a direct cascade, which forces energy to
cascade in the opposite direction, leading to the for-
mation of increasingly large vortices [10,11].
In momentum space,

E ¼
Z

EðkÞdk;

Ω ¼
Z

k2EðkÞdk; ð18Þ

with EðkÞ the fluid energy at wavenumber k. On the other
hand, for the TTF system we have

E ¼
X
j

Ej;

N ¼
X
j

ð2jþ 3Þ−1Ej: ð19Þ

There is thus a natural parallel in both cases. However, the
difference in the exponent of the wavenumber (k or j) has
an important consequence. Namely, in the hydrodynamic
case, energy must flow to longer wavelengths and ens-
trophy to shorter ones irrespective of the wavenumber
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FIG. 1 (color online). Full numerical (solid) and TTF (dotted)
energy (top panel) and running time-average energy (bottom
panel) per mode, for 2-mode equal-energy initial data. The
transfer of energy from mode j ¼ 1 into mode j ¼ 0 is a
consequence of N conservation. Note that there is some un-
certainty as to whether collapse occurs around t ≈ 1080 [18], but
this is not relevant to our discussion of dual turbulent cascades.

5This cascading behavior is also present in the viscous/
compressible case, but its analysis is sightly more involved.
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(assuming there is no upper limit to the wavelengths
allowed). On the other hand, in the scalar case energy
flows both to low and high wavenumbers by similar
amounts in the high wavenumber regime (where the 3
can be neglected compared to 2j).
For now, let us concentrate on understanding the dual

cascade process in the scalar case. Suppose that, under time
evolution, all of the energy E could be transferred to higher-
j modes. In that case, since higher-j modes have more
energy per particle (Ej=Nj ¼ ωj), this process would
violate particle number conservation. Instead, in order to
conserve N some energy must transfer to lower-j modes,
which are less energetic.
This phenomenon has in fact already been observed in

our previous work [7], when we studied the evolution of
initial data with the energy distributed evenly between the
two lowest modes. We reproduce in Fig. 1 our prior results.
Notice that the energy initially flows into mode j ¼ 0 from
mode j ¼ 1. This behavior is now understood in light of the
second conserved quantity, for if all the energy were to
flow to higher modes, then N would not be conserved.
The correspondence between full numerics and TTF shown
in Fig. 1 also indicates that conservation of N is not merely
an effect of our perturbation scheme.

IV. NONEQUIPARTITION OF ENERGY
AND STABILITY

That the Fermi-Pasta-Ulam (FPU) system of nonlinearly
coupled oscillators did not reach equipartition for small
initial energy was quite surprising and was seminal in the
development of nonlinear dynamics [15,19,20]. In the
current context of a scalar field in AdS, if a black hole
does not form, then the question of thermalization of the
holographically dual conformal field theory (CFT) is
complicated. Recall that evaporation of small black holes
gives rise to thermal states and so naturally bridges the
initial state on the dual CFT to its final thermal one,
represented by a partially evaporated black hole in equi-
librium with surrounding Hawking radiation [21].
Consequently, failure to yield a black hole raises the
question of whether and how the corresponding CFT will
achieve a thermal state. One should take note here that our
calculations within Einstein gravity are limited to the
classical regime (thus ignoring 1=N2 corrections) and also
ignore possible higher curvature modifications.6

With such caveats in mind, one can show that within
TTF, the fact that both N and E are conserved implies that
energy equipartition cannot occur. To see this, assume some
initial state has energy E and particle number N. Then, if
equipartition were to occur, each mode would have energy
Ej ¼ E=ðjmax þ 1Þ (where we truncate our system at

j ¼ jmax). But that would imply that the total particle
number is

Nfinal ¼
Xjmax

j¼0

Ej

ωj
¼

Xjmax

j¼0

E
ωjðjmax þ 1Þ

¼
Hjmaxþ3

2
− 2þ log 4

2ðjmax þ 1Þ E; ð20Þ

where Hn is the nth harmonic number. Unless finely tuned
initially, this value will not equal N and, therefore, will be
excluded dynamically.

FIG. 2 (color online). Paths of E0 and E1 for (a) 2-mode initial
data of Fig. 1 (blue curve; TTF solution with jmax ¼ 47) and
(b) interpolation between 2-mode and quasiperiodic initial data.
Red dot represents the quasiperiodic solution with the same
values of total E and N as the 2-mode solution. Solution is
constrained by E and N conservation to lie within the blue shaded
region.

6Within the class of Gauss-Bonnet corrections, it has been
recently pointed out that many configurations avoid black hole
collapse [8,22].

BUCHEL et al. PHYSICAL REVIEW D 91, 064026 (2015)

064026-6



In fact, one can go further and place bounds on regions
of phase space that are excluded by conservation of N
and E. We illustrate this in Fig. 2. The blue curve in
Fig. 2(a) represents the path of the 2-mode solution of
Fig. 1 in ðE0; E1Þ-space. It is confined to lie within the
shaded blue region between the lines drawn on the plot.
The two upper boundary lines arise because of E (dashed
line) and N (dotted line) conservation,

E0 þ E1 ≤ E; ð21Þ

E0

3
þ E1

5
≤ N ¼ 4

15
E: ð22Þ

The lower bound (solid line) arises because only a certain
amount of energy can flow to the higher modes. The
energy that can flow to higher modes is maximized if it
flows into mode j ¼ 2 because its particles are least
energetic. So we write E and N conservation as

E0 þ E1 þ E2 þ
X
j>2

Ej ¼ E; ð23Þ

E0

3
þ E1

5
þ E2

7
þ
X
j>2

Ej

2jþ 3
¼ N ¼ 4

15
E: ð24Þ

Eliminating E2, we obtain our bound,

4

3
E0 þ

2

5
E1 ¼

13

15
Eþ

X
j>2

�
1 −

7

2jþ 3

�
Ej

≥
13

15
E; ð25Þ

since the last term on the first line is non-negative.
Given the bounds, it is clear that energy equipartition is

not possible, since equipartition occurs at ðE0; E1Þ ¼
ð1=ðjmax þ 1Þ; 1=ðjmax þ 1ÞÞ → ð0; 0Þ as jmax → ∞. More
generally, the bounds arising from the conservation laws
limit the amount of energy that can cascade to high modes.
As equipartition is ruled out, one can consider other

possible late time configurations where some energy has
transferred to high-j modes. For example, power laws of
the form Ej ∼ ðjþ 1Þ−α were observed in numerical
evolutions just prior to collapse for Gaussian initial data
[23,24]. It is straightforward to determine, for a given α, the
corresponding value of E=N for the configuration. Larger α
(steeper power laws) correspond to smaller values of E=N,
with E=N↘3 as α → ∞ in AdS4. It is intriguing to note
that the σ ¼ 1=16 Gaussian initial data of [1] is charac-
terized by the power law with α ¼ 1.15, not that far from
the value α ¼ 1.2 observed just prior to collapse [23]. The
σ ¼ 0.4 Gaussian initial data of [6]—that appear to avoid
collapse—have E=N ¼ 3.43, which corresponds to a much
steeper power law of α ¼ 2.60. The 2-mode equal-energy
configuration has E=N ¼ 3.75, corresponding to α ¼ 2.15.

The quantity E=N may, therefore, indicate whether the
given initial data are likely to collapse for small initial
amplitude. However, this cannot be the full story, since
single-mode initial data have E=N ¼ ωj (which can be
arbitrarily large for large j) and are expected not to
collapse [5].
In light of the fact that we know that both N and E

are conserved, we turn now to a re-examination of a
class of quasiperiodic solutions we previously identified
within the context of TTF. In [7], we looked for solutions
with harmonic τ dependence in each mode, AjðτÞ ¼
αje−iβjτ, with βj ∈ R (so that the energy in each mode
is constant). We found that, given a particular discrete
choice of a dominant mode, there exists a two-parameter
family of quasiperiodic solutions that generalize7 the one-
parameter periodic solutions of [1]. These solutions have
approximately exponential energy spectrum to both sides
of the dominant mode (see Fig. 1 of [7]), with the
exponential decay rate one of the two parameters (the
other being the overall amplitude). We could only find such
solutions for sufficiently fast exponential fall-off. Under
fully nonlinear numerical evolution, the solutions appeared
to be stable.
Instead of taking the two parameters characterizing a

quasiperiodic solution to be the amplitude and the expo-
nential decay rate of the energy spectrum, we can equiv-
alently take them to be N and E. Thus, given a choice of a
dominant mode, and values for N and E within a suitable
range, there is a quasiperiodic TTF solution that appears to
be stable under the full numerical evolution.
For our 2-mode initial data, we can extract N and E

and construct a quasiperiodic solution with these values,
based around the dominant mode j ¼ 0. This is presented
as the red dot in Fig. 2(a). We see that the 2-mode
solution seems to oscillate around the quasiperiodic
solution rather than filling the entire shaded blue region
available to it. Following the q-breather approach to
understanding the FPU problem [25,26], we can ask
whether the 2-mode solution should be thought of as a
perturbation about the associated quasiperiodic solution
(which itself is a generalization of a q-breather to the
case with both N and E conserved). To study this
possibility, we considered initial data that interpolate
(with parameter λ) between the 2-mode initial data
(λ ¼ 0) and the quasiperiodic initial data (λ ¼ 1). In
Fig. 2(b) we present the results for λ ¼ 0.5. Notice that
the solution is confined to a smaller region in ðE0; E1Þ-
space around the quasiperiodic solution. This is to be
expected if it can be treated as a perturbation about the
quasiperiodic solution.

7The periodic solutions of [1] were extended to higher non-
linear order in [5]. We have not attempted this analysis for our
quasiperiodic solutions; however, numerical evidence indicates
stability in the full theory.
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As λ is varied from 0 to 1, the dynamics of EjðτÞ
smoothly deform to smaller oscillations, but maintain the
overall structure of recurrences seen in Fig. 1. In particu-
lar, the time of the first recurrence changes by less than a
factor of two. This supports the claim that the 2-mode
solution can be regarded as a perturbation (albeit a large
one) of the quasiperiodic solution. In that case, the
recurrences are merely oscillations about the quasiperi-
odic solution. (This doesn’t preclude collapse, as the
2-mode solution can in principle be an unstable perturba-
tion of the quasiperiodic solution.8) If in the full theory,
the quasiperiodic solutions persist and are stable, and if a
given solution lies within the radius of stability, then it
must avoid collapse.
Alternatively, as argued in [13,14], this behavior

could be illustrating stochasticity between the stability
regions of each individual mode. Both of these options
are plausible explanations for the possible stability of
2-mode data.

V. FINAL COMMENTS

The question of stability of AdS has recently received a
great deal of attention, as it is of interest within general
relativity, and it has holographic applications. While the full
answer to this question is still outstanding, a combination of
numerical simulations and perturbative studies has provided
many important insights (see e.g. [1–3,5–9,16,18,27,28]).
Using the perturbative approach introduced in [7], we
studied conserved quantities in the spherically symmetric
Einstein-scalar system. We identified the total mode-energy
E, the Hamiltonian H, and the particle number N as
conserved quantities, and we explored their dynamical
effects. Based on our understanding of TTF, we expect
these quantities to be conserved for timescales t ∼ 1=ϵ2 in
the full theory, and so they are particularly useful for
studying small-amplitude perturbations.

We have shown that conservation of E and N together
imply that an inverse cascade of particles must accompany
any energy flow to higher wavenumbers and vice versa.
Conservation of E and N also causes parts of phase space
(including energy equipartition) to be dynamically
excluded. Additionally, we have discussed the possibility
of quasiperiodic q-breathers as providing yet further
examples of stability islands.
Conservation laws therefore play a very important role in

constraining the dynamics of the system. With three
constants of motion already identified for the problem of
spherical collapse in AdS, it is tantalizing to imagine that
others are still waiting to be discovered. Numerical evi-
dence suggests there are several families of initial data that
do not lead to black hole formation. Nonthermalization in
one-dimensional systems such as FPU chains is evidence
that the system may be integrable; i.e., that it contains an
infinite number of conserved quantities.
Integrable systems in more than one spatial dimension,

however, are quite rare, and so in that sense instability is
more likely for the full gravitational problem in the absence
of spherical symmetry. This is related to the fact that the
density of states grows more rapidly with energy in higher
dimensions. On the other hand, black hole formation is
generally thought to be easiest with spherical symmetry.
This tension remains to be resolved.
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