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We study the dynamics of unstable Reissner-Nordström anti–de Sitter black holes under charged scalar
field perturbations in spherical symmetry. We unravel their general behavior and approach to the final
equilibrium state. In the first part of this work, we present a numerical analysis of massive charged scalar
field quasinormal modes. We identify the known mode families—superradiant modes, zero-damped
modes, AdS modes, and the near-horizon mode—and we track their migration under variation of the black
hole and field parameters. We show that the zero-damped modes become superradiantly unstable for large
RNAdS with large gauge coupling; the leading unstable mode is identified with the near-horizon
condensation instability. In the second part, we present results of numerical simulations of perturbed large
RNAdS, showing the nonlinear development of these unstable modes. For generic initial conditions, charge
and mass are transferred from the black hole to the scalar field, until an equilibrium solution with a scalar
condensate is reached. We use results from the linear analysis, however, to select special initial data
corresponding to an unstable overtone mode. We find that these data evolve to produce a new equilibrium
state—an excited hairy black hole with the scalar condensate in an overtone configuration. This state is,
however, unstable, and the black hole eventually decays to the generic end state. Nevertheless, this
demonstrates the potential relevance of overtone modes as transients in black hole dynamics.
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I. INTRODUCTION

Explorations of spacetime dynamics in general relativity
have uncovered many surprising phenomena with theoreti-
cal and astrophysical implications. Examples include the
discovery of critical phenomena [1,2], spacetime turbu-
lence [3–6], and the black hole superradiant instability [7],
the latter of which has been proposed as a probe of dark
matter [8,9]. In recent years, the AdS=CFT correspondence
has provided additional motivation for studying black holes
in anti–de Sitter (AdS) spacetimes: black hole equilibration
is believed to be holographically dual to thermalization of
strongly coupled field theories, whereas instabilities
describe phase transitions [10,11].
One interesting theme is the explosion of black hole

solutions when standard assumptions are relaxed. Black
holes with “hair” (i.e., stationary black holes described by
quantities other than the total mass, angular momentum, and

electric charge) are generally forbidden as asymptotically
flat solutions to the Einstein-Maxwell system in four
dimensions. But with additional fields, higher dimensions,
or more general boundary conditions, the various theorems
can be circumvented, and additional solutions with the same
conserved quantities can emerge [12,13]. For instance, in
five dimensions, with one compactified dimension, there
exist black string and black hole solutions. Generally, one of
these solutions will be entropically preferred, and this often
implies dynamical instability of the other solutions [14].
Indeed, if the compactified dimension is large compared
to the black hole radius, then the black string is linearly
unstable [15]. Nonlinearly, the string bifurcates self-similarly
into a chain of black holes [16].
Black holes can have hair made up of additional fields if

there is a confining mechanism to prevent dissipation. This
occurs, for instance, in asymptotically AdS spacetimes, or
for massive fields. One example is a charged planar AdS
black hole in the presence of a charged scalar field: for
sufficiently low temperature, there exist two stationary
solutions, Reissner-Nordström-AdS (RNAdS) and a
charged black hole with a scalar condensate. At these
temperatures, RNAdS is subject to the near-horizon scalar
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condensation instability [11], which leads to the hairy
black hole under dynamical evolution [17]. For small
RNAdS, the superradiant instability also leads to a hairy
black hole [18].
The hairy black holes obtained as end states of evolution

in [17,18] are in their ground state. In the superradiant case,
the final black hole can be understood as an equilibrium
combination of a small RNAdS black hole with the
fundamental mode of a charged scalar field in global
AdS [19]. However, the scalar field also has overtone
solutions, and it is intriguing to ask whether these might
also give rise to hairy black holes, now in their excited state.
The central result of this paper is the dynamical con-

struction of stationary excited hairy black holes. Our
approach is to start with a fine-tuned perturbation of an
unstable black hole that corresponds to an unstable over-
tone quasinormal mode. We evolve the instability numeri-
cally, and it eventually forms the excited hairy black hole.
This black hole, is, however, unstable, and after some time
decays to the ground state.
We take our initial black hole to be RNAdS, which is

dynamically unstable to charged scalars even in spherical
symmetry. Although our end goal is the excited hairy
black hole, we begin in Sec. III with a numerical study of
RNAdS massive charged scalar field quasinormal modes.
Ultimately, we use the results of this analysis to construct
the special initial data, but this section also constitutes a
thorough analysis of the various modes of RNAdS through-
out parameter space. Instabilities of RNAdS are usually
studied using approximations that rely on the smallness of
some parameter, either the black hole radius in the case of
the superradiant instability, or the surface gravity for the
near-horizon instability. We use the continued fraction
method of Leaver [20], so our numerical analysis does
not require these approximations.
Previous analyses have identified several mode families.

For small black holes, RNAdS is “close” to global AdS,
and therefore its spectrum contains quasinormal modes that
are deformations of AdS normal modes. The normal-mode
frequencies are evenly spaced along the real axis, so for
sufficiently large gauge coupling q, they can be made to
satisfy the superradiance condition, 0 < Reω < qQ=rþ.
Modes satisfying this condition are amplified when they
interact with the black hole, leading to instability [21].
Extremal RNAdS, meanwhile, has a near-horizon region

with metric AdS2 × S2 [22]. This gives rise to an instability
whenever the effective near-horizon mass of the scalar field
lies below the Breitenlohner-Freedman (BF) bound [23] of
the near-horizon region and the true mass is kept above the
global BF bound [11]. This condition is most easily satisfied
for large black holes in global AdS [19], and by continuity it
also extends to near-extremal black holes [24–26].
In addition to the AdS modes, which can be super-

radiantly unstable, and the near-horizonmode, the spectrum
of RNAdS also contains a collection of “zero-damped”

modes. These modes are associated to the near-horizon
region of near-extreme black holes, and indeed they are
present also in the asymptotically flat case [27]. For small
RNAdS they are described by a tower of evenly-spaced
quasinormal frequencies extending below the real axis near
the superradiant-bound frequency, with imaginary part
proportional to the surface gravity. As extremality is
approached, these merge into a branch point representing
the horizon instability of Aretakis [28].
The interplay between superradiant and near-horizon

instabilities was studied in [19], where it was shown that for
small black holes, the near-horizon instability condition for
a massless field becomes q2 > 1=ð4r2þÞ, so that it ceases to
operate for fixed q as the black hole is made smaller.
Conversely, the near-horizon instability does not require
superradiance, as it will occur with q ¼ 0 provided m2 is
sufficiently negative [25].
All of the modes above can be seen in our figures in

Sec. III C. Our numerical results, however, provide further
clarity on the nature of the near-horizon instability. We
show by varying the black hole size and the gauge
coupling, that the zero-damped modes for small black
holes migrate to become superradiantly unstable for large
black holes. This family of modes has in fact many
similarities to the small black hole AdS modes. Finally,
we show that the leading unstable mode migrates to
become the near-horizon unstable mode under suitable
variation of parameters.
Although a dynamical instability can be identified

through a linearized analysis, this cannot capture its
complete time development. In Sec. IV we present results
of numerical simulations showing the full nonlinear devel-
opment of the unstable modes of large RNAdS in spherical
symmetry. In Sec. IV B, we evolve generic initial pertur-
bations, and observe a dynamical behavior similar to that
observed in [18] for the small RNAdS superradiant
instability: the modes extract charge and mass until the
system settles to a final static black hole with a scalar
condensate. For smaller gauge coupling, the final conden-
sate lies closer to the black hole, similar to simulations of
the near-horizon instability in the planar limit [17].
In Sec. IV C, we construct the excited hairy black holes.

We select parameters such that the corresponding large
RNAdS solution has more than one unstable mode. Taking
the quasinormal modes from the analysis of Sec. III, we
carefully perturb the background RNAdS solution with the
first overtone mode, n ¼ 1. We observe that under evolu-
tion the field extracts charge and mass until the mode
saturates and superradiance stops. This time, however, the
black hole is in an n ¼ 1 excited state. This black hole
appears to be a stationary solution, but it is in fact unstable
to the fundamental n ¼ 0 perturbation, since only the n ¼ 1
mode saturated the superradiant bound. Because of small
nonlinearities and numerical errors, we cannot avoid
seeding this mode, albeit at much smaller amplitude.
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After some time, it grows and overtakes the n ¼ 1 mode,
and the black hole decays to the ground state.
As a final demonstration, we construct initial data

consisting of several superradiant modes, such that the
solution cascades through a series of unstable excited
black hole equilibria corresponding to different overtones.
A sample evolution is shown in Fig. 1.
This paper is organized as follows. In Sec. II we

introduce the Einstein-Maxwell-charged scalar system
and the RNAdS background solution. In Sec. III, we
review the various mode families of RNAdS and we
present our linear analysis. We present our nonlinear
simulations of the instabilities in Sec. IV, with the con-
struction of the excited hairy black holes in Sec. IV C. We
conclude in Sec. V. Throughout the paper, unless otherwise
indicated we follow conventions of [29] and we work in
four spacetime dimensions.

II. MODEL

We consider Einstein gravity with a negative cosmo-
logical constant, coupled to Maxwell and massive charged
scalar fields. The Lagrangian density is

L ¼ Rþ 6

L2
− FabFab − 4ðjDaψ j2 −m2jψ j2Þ; ð1Þ

where Da ≡∇a − iqAa is the gauge covariant derivative.
This gives rise to the Einstein equation,

Gab −
3

L2
gab ¼ 8πTψ

ab þ 8πTEM
ab ; ð2Þ

with stress-energy tensors,

Tψ
ab ¼

1

4π

�
1

2
½ðDaψÞ�ðDbψÞ þ ðDaψÞðDbψÞ��

−
1

2
gabðjDcψ j2 þm2jψ j2Þ

�
; ð3Þ

TEM
ab ¼ 1

4π

�
gcdFacFbd −

1

4
gabFcdFcd

�
; ð4Þ

the Maxwell equation,

∇bð∇bAa −∇aAbÞ ¼ iqψ�Daψ − iqψðDaψÞ�; ð5Þ

and the Klein-Gordon equation,

DaDaψ −m2ψ ¼ 0: ð6Þ

The RNAdS black hole is a static, spherically symmetric
solution with metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

2; ð7Þ

where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
þ r2

L2
; ð8Þ

with Maxwell potential

Aμdxμ ¼
�
−
Q
r
þ C

�
dt; ð9Þ

and with vanishing ψ . We have inserted a constant Cdt in
A, which is pure gauge. We will take C ¼ 0 in most of this
paper, so that Að∞Þ ¼ 0. In Sec. III A 1, however, we will
take C ¼ Q=rþ to set AðrþÞ ¼ 0, which is convenient for
studying the near-horizon geometry. Under a change of
gauge C → Cþ ΔC, the scalar field undergoes a frequency
shift ψ → eiqΔCtψ .
We take the RNAdS solution (7)–(9) as the background

for the linear analysis. Also imposing spherical symmetry,
the Klein-Gordon equation (6) takes the form

0 ¼ −
1

f
∂2
tψ þ 2iqA0

f
∂tψ þ 1

r2
∂rðr2f∂rψÞ

−
�
m2 −

q2A2
0

f

�
ψ : ð10Þ

Since ψ vanishes in the background, it decouples from the
other fields at linear order, and it is consistent to study ψ as
a test field. We analyze (10) in Sec. III.
It is convenient to express the background quantities in

terms of the inner and outer horizon radii, r− and rþ. The
metric function becomes

FIG. 1. Apparent horizon area of a black hole as it undergoes a
series of transitions through metastable excited hairy black hole
states. Initial data chosen to consist primarily of n ¼ 2 overtone,
with subleading n ¼ 1 overtone.
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fðrÞ ¼ ðr − r−Þðr − rþÞ
L2r2

½r2 þ ðr− þ rþÞr
þ ðL2 þ r2− þ r2þ þ r−rþÞ�; ð11Þ

from which we can read off the mass and charge of the
black hole,

M ¼ ðr− þ rþÞ
2L2

ðL2 þ r2− þ r2þÞ; ð12Þ

Q2 ¼ r−rþ
L2

ðL2 þ r2− þ r2þ þ r−rþÞ: ð13Þ

Thus, at extremality, rþ ¼ r−, and

Mext ¼ rþ þ 2r2þ
L2

; ð14Þ

Q2
ext ¼ r2þ

�
1þ 3r2þ

L2

�
: ð15Þ

In Sec. IV, we solve the full system of equations (2)–(6)
with m ¼ 0 in spherical symmetry in ingoing coordinates.

III. LINEAR PERTURBATIONS

In this section we study the test scalar field (10). We
begin in Sec. III A by describing the mode families and
instabilities that we expect to see in our numerics. In
Sec. III B we describe the continued fraction method for
finding quasinormal frequencies numerically, and we
present our results in Sec. III C.

A. Preliminaries

This section describes three families of modes that
appear in the spectra we obtain in Sec. III C: the near-
horizon mode, the AdS modes, and the zero-damped
modes. These have all been derived analytically under
various approximations elsewhere in the literature. We
include them for completeness and for interpreting our
numerical results in Sec. III C.

1. Near-horizon condensation instability

Four-dimensional extremal black holes with spherical
horizon topology have near-horizon geometries closely
related to AdS2 × S2 [22]; for extremal RNAdS, this
correspondence becomes exact. The near-horizon instabil-
ity is based on the violation of the BF bound of the near-
horizon geometry by the scalar field. Holographically, the
condensation corresponds to a transition to a superconduct-
ing phase below a critical temperature [10,11].
To take the near-horizon limit it is useful to set the

constant C ¼ Q=rþ in the Maxwell field, so that Aa
vanishes on the horizon. For extremal RNAdS, we then
have

ds2ext ¼ −fextdt2 þ
1

fext
dr2 þ r2dΩ2

2; ð16Þ

Aext ¼
Qextðr − rþÞ

rrþ
dt; ð17Þ

where

fext ¼
ðr − rþÞ2
L2r2

½r2 þ 2rþrþ ðL2 þ 3r2þÞ�: ð18Þ

We then define a change of coordinates depending on a
parameter λ > 0,

t ¼ t̃
λ
; r ¼ rþ þ λr̃: ð19Þ

Taking the λ → 0 limit in these coordinates, we obtain the
near-horizon fields,

ds2NH ¼ −
r̃2

R2
dt̃2 þ R2

r̃2
dr̃2 þ r2þdΩ2

2; ð20Þ

ANH ¼ Qextr̃
r2þ

dt̃; ð21Þ

where

1

R2
¼ 6

L2
þ 1

r2þ
: ð22Þ

The metric (20) is recognized as AdS2 × S2 in Poincaré
coordinates, where the AdS2 factor has radius R. Note that
the choice of C ensures that the Maxwell field remains
finite in the near-horizon limit.
The scalar field acquires an effective mass in the near-

horizon region. Taking the near-horizon limit of the Klein-
Gordon equation (10), this is seen to be

m2
eff ¼ m2 −

q2A2
0;ext

fext

����
λ→0

¼ m2 − q2 ·
L2 þ 3r2þ
L2 þ 6r2þ

: ð23Þ

In the large black hole limit, m2
eff → m2 − q2=2. Instability

can occur if m2
eff lies below the near-horizon BF bound,

m2
NHBF ¼ −

1

4R2
¼ −

1

4

�
6

L2
þ 1

r2þ

�
; ð24Þ

which in the large black hole limit becomes m2
NHBF →

−3=ð2L2Þ. It was further shown using energy arguments
that for large black holes this bound is sharp [30]. To be
globally stable, it is necessary that the global BF bound be
respected, i.e., m2 ≥ −9=ð4L2Þ. Thus, in the large black
hole limit, the near-horizon instability is triggered if
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−
9

4L2
≤ m2 < −

3

2L2
þ q2

2
; ð25Þ

which can be easily satisfied by choosing sufficiently large
q2 or negative m2 (but not too negative). By continuity, the
instability is expected to also occur for near-extreme black
holes [10,26].
For small black holes, it is not possible to trigger the

near-horizon instability with negative m2 since in this case
the near-horizon BF bound is below the global BF bound.
In addition, q2 must be taken very large to obtain an
instability, i.e.,

q2 ≥
1

4r2þ
þm2: ð26Þ

For these reasons, the near-horizon instability is said to not
operate for small black holes [19].
It should be noted that in the rest of the paper we will set

the gauge constant C → 0, so mode frequencies pick up an
additional shift Δω ¼ qC ¼ qQ=rþ. In that gauge, the
near-horizon unstable mode frequency for near-extreme
black holes will lie near the superradiant bound fre-
quency, qQ=rþ.

2. Superradiant instability

The superradiant instability (or “black hole bomb”)
occurs when superradiant scattering is combined with a
confinement mechanism, such as a mirror, a mass term, or
an AdS boundary [7]. Under superradiant scattering, an
incident wave is amplified by the black hole as it extracts
mass and angular momentum or charge. With the confine-
ment mechanism, the outgoing wave cannot escape to
infinity, and instead interacts repeatedly with the hole,
resulting in exponential growth.
The superradiant condition is most easily derived from

thermodynamic arguments [31]. In the charged black hole
case, consider a mode solution ψ ¼ e−iωtRðrÞ with real
frequency ω. The charge to mass ratio of the mode is

δQ
δM

¼ q
ω
: ð27Þ

When the mode interacts with the black hole, it exchanges
charge and mass in this ratio. The first law of black hole
mechanics for charged black holes, however, is

δM ¼ κ

8π
δAH −ΦHδQ; ð28Þ

where κ is the surface gravity, AH is the horizon area, and
ΦH is the electrostatic potential at the horizon. Inserting
(27) into (28) relates the change in mass to the change in
area of the black hole as a consequence of interacting with
the mode,

δM ¼ κ

8π

ω

ðωþΦHqÞ
δAH: ð29Þ

The second law of black holes mechanics states that the
area of the horizon can only increase in dynamical
processes, δAH ≥ 0. Hence, waves that satisfy

0 < ω < −qΦH ¼ qQ
rþ

ð30Þ

will have δM < 0, and will therefore extract mass and
charge from the black hole.
The modes themselves are provided by the confinement

mechanism. For small RNAdS, there is a set of modes that
are deformations of global AdS normal modes, which have
frequencies,

ω�
n ¼ � 2nþ 3

L
; n ¼ 0; 1; 2;… ð31Þ

We therefore expect instability for ωþ
n with

2n ≲ qQL=rþ − 3: ð32Þ
By choosing q sufficiently large, this condition is easily
satisfied.
For more detailed derivations of the superradiant insta-

bility using matched asymptotic expansions we refer the
reader to [19,21].

3. Zero-damped modes

A final class of modes that is relevant to our analysis is
associated to the near-horizon region of near-extremal
black holes. These modes, which are present also for
asymptotically flat black holes, can be viewed as trapped
in the extended black hole throat region, with decay rate
that goes to zero in the extremal limit. They are often
referred to as “zero-damped” modes to distinguish them
from Kerr-Newman modes with nonzero decay rate in this
limit [32,33]. We will use this terminology, although it
should be kept in mind that the zero-damped modes are not
necessarily the longest lived modes for our asymptotically
AdS black holes.
In the asymptotically flat case, the zero-damped modes

were shown in [27] to fall into one of two families,
principal or supplementary, depending on the charge
coupling and angular mode number of the scalar field.
(The terminology refers to the near-horizon SOð2; 1Þ
representations in which these modes lie.) Using a matched
asymptotic expansion, the quasinormal frequencies of
asymptotically-flat RN in spherical symmetry can be
shown [27] to be

ωP
n ¼ qQ

rþ
þ κ

�
qrþ − i

�
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− ðqrþÞ2

r
þ n

�
þ ηrþ

	
ð33Þ
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and

ωS
n ¼ qQ

rþ
þ κ

�
qrþ − i

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− ðqrþÞ2

r
þ n

�	
; ð34Þ

where n ¼ 0; 1; 2;… is the overtone number, κ is the
surface gravity, and η is a small complex number. If the
quantity under the square root is positive, then the supple-
mentary family (34) applies, otherwise the principal fam-
ily (33).
We see that both families consist of a κ-spaced tower of

modes extending below the superradiant bound frequency.
As κ → 0 these modes converge to qQ=rþ, which becomes
a branch point; this is associated to the horizon instability of
Aretakis [27].
Notice that the quantity under the square root in (33)–

(34) becomes negative when the near-horizon instability
condition (26) is satisfied, i.e., the effective mass violates
the near-horizon BF bound. The frequency (33) never-
theless does not correspond to an instability in asymptoti-
cally-flat RN, as the imaginary part remains negative. For
small RNAdS, we expect1 similar behavior, with small
ðrþ=LÞ-corrections to the quasinormal frequencies. For
large RNAdS, however, we will show numerically in
Sec. III C 2 that these modes can become unstable when
the near-horizon BF bound is violated.

B. Continued fraction method

We now describe the continued fraction method for
finding quasinormal mode solutions. We seek solutions that
are ingoing at the horizon and satisfy the reflecting
condition at the AdS boundary. Satisfaction of both of
these conditions should yield a discrete spectrum of
complex frequencies.
Let ψ ¼ e−iωtRðrÞ be our mode ansatz. The Klein-

Gordon equation (10) reduces to the radial equation,

d
dr

�
r2f

dR
dr

�
þ
�ðωr2 − qQrÞ2

r2f
−m2r2

�
R ¼ 0: ð35Þ

Asymptotically as r → rþ;∞, this has two solutions,

RðrÞ ∼
(

ðr − rþÞ
� iL2rþðrþω−qQÞ

ðrþ−r−ÞðL2þr2−þ3r2þþ2r−rþÞ as r → rþ;

r
1
2
ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2L2þ9

p
−3Þ as r → ∞:

ð36Þ

At infinity, we require the solution to decay, so we take the
solution with the minus sign as r → ∞ in (36). This
corresponds to a reflecting condition at the AdS boundary.
To impose the ingoing condition at the horizon, we take the
minus sign solution as r → rþ.

To find a solution everywhere with the desired asymp-
totic behavior, we write the radial function as

RðrÞ ¼ ðr − rþÞAðr − r−ÞB−AFðuÞ; ð37Þ

where

A ¼ −
iL2rþðrþω − qQÞ

ðrþ − r−ÞðL2 þ r2− þ 3r2þ þ 2r−rþÞ
; ð38Þ

B ¼ −
1

2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2L2 þ 9

p
þ 3

�
; ð39Þ

and where FðuÞ is a new unknown function with
u ¼ ðr − rþÞ=ðr − r−Þ. If F is smooth on u ∈ ½0; 1� then
R satisfies the desired asymptotic conditions.
We now expand F as a power series

FðuÞ ¼
X∞
n¼0

anun; ð40Þ

and insert this into (35). This gives a complicated relation
on the sequence ðanÞ, which we can simplify into a three-
term recurrence relation using Gaussian reduction. We
finally obtain a relation of the form

α0a1 þ β0a0 ¼ 0;

αnanþ1 þ βnan þ γnan−1 ¼ 0; n ≥ 1; ð41Þ

where αn, βn, and γn all depend on ω and the system
parameters. We obtained complicated closed form expres-
sions for these coefficients, but have not included them due
to space considerations.
If the series (40) converges uniformly for some value of

ω, then that corresponds to a quasinormal mode. To obtain
suchωwe use the continued fraction method of Leaver [20]
and Gautschi [34]. (This method was recently used to
compute quasinormal modes for a massless charged scalar
in asymptotically flat RN [35].) The method relies on the
fact that the power series (40) converges uniformly if the
following continued fraction converges:

−γ1
β1 −

α1γ2
β2−

α2γ3
β3−���

: ð42Þ

Moreover, if the continued fraction (42) converges, then it
is equal to a1=a0. This allows us to close the recurrence
relation (41),

−γ1
β1 −

α1γ2
β2−

α2γ3
β3−���

¼ −
β0
α0

: ð43Þ

Quasinormal frequencies are the values of ω that solve
(43). We find these frequencies numerically by plotting the1We thank P. Zimmerman for helpful discussions on this point.
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logarithm of the difference between the left and right sides
of (43), and searching for negative singularities.

C. Results

We now present the mode spectra obtained numerically
as we vary the black hole parameters, α≡Q=Qext and rþ,
and the field parameters, q and m. We fix L ¼ 1.

1. Small black hole

A typical quasinormal spectrum for small RNAdS is
shown in Fig. 2. This shows two branches of modes: the
vertical branch extending below the real axis is the
supplementary branch (34) of zero-damped modes, and
the horizontal branch is the family of AdS modes. The
n ¼ 0 positive-frequency AdS mode lies within the band
0 < Reω < qQ=rþ, and is therefore superradiantly unsta-
ble; it lies above the real axis in Fig. 2. Note that since the
black hole is nonextremal, the zero-damped modes have
nonzero decay rate, and are in fact less long-lived than the
AdS modes.
For the stable AdS modes, we see that the decay rate is

proportional to the distance from the superradiant strip. We
have also verified that the separation between zero-damped
modes is equal to κ: this is shown in Fig. 3 (This separation,
although expected to hold only for small RNAdS, holds
also for larger rþ.) In this figure, we plot the mean spacing
δ ¼ hωS

nþ1 − ωS
ni for rþ ¼ 1 and q ¼ 0, as a function of the

surface gravity κ. We observe that δ → κ as κ → 0, in
agreement with [19].

We now study the influence of varying the field charge q
on the spectrum; this is shown in Fig. 4. As q increases, so
does the superradiant bound frequency, qQ=rþ. The tower
of zero-damped mode frequencies remains tied to this
frequency, and shifts to the right in the complex plane as
well. The AdS modes also shift to the right, but more
slowly than the superradiant bound frequency. One by one,
these modes are overtaken by the superradiant bound
frequency, and they become unstable. This is shown
in Fig. 4.

2. Large black hole

The discussion of Sec. III A indicates that for large
RNAdS, we should see a near-horizon unstable mode and a
tower of zero-damped modes. AdS modes, meanwhile, are
known to be present only for small black holes, where they
can be superradiantly unstable for large q, and it is not clear

FIG. 2. Continued fraction values for RNAdS with rþ ¼ 0.1,
α ¼ 0.8, q ¼ 4, and m ¼ 0. We plot the logarithm of the
difference between the left hand side and right hand side of
(43). Darker colors correspond to higher values. Quasinormal
modes (minima in the plot) are marked by black crosses. We see
that nonzero q breaks the symmetry between positive and
negative real part. Two branches of modes are present, a vertical
branch of zero-damped modes, and a more horizontal branch
AdS modes. The dashed vertical line corresponds to the super-
radiant bound frequency; modes satisfying 0 < Reω < qQ=rþ
are unstable.

FIG. 3. Spacing δ between two zero-damped modes versus
surface gravity κ. Here, we take q ¼ 0 and rþ ¼ 1. We see that
δ → κ as κ → 0.

FIG. 4. Quasinormal frequencies of RNAdS for rþ ¼ 0.1,
α ¼ 0.8, m ¼ 0, and 0 ≤ q ≤ 12. Dashed gray curves track the
quasinormal frequencies under variation of q. The two mostly-
horizontal trajectories are zero-damped modes, and the others are
AdS modes. The AdS modes become unstable when Reω drops
below the superradiant bound frequency (indicated by dashed
vertical lines).
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in general what role superradiance might play for large
black holes. To disentangle the various instabilities, we use
our numerical code to find and track the quasinor-
mal modes.
A typical large RNAdS spectrum is shown in Fig. 5. This

shows two diagonal branches of stable modes and one
unstable mode. Already it is clear that the superradiant
instability plays a role for large black holes, as the unstable
frequency lies within the superradiant strip. In our studies,
we found that, when it exists, every unstable mode lies
within this strip.
To isolate the near-horizon instability, we can set q ¼ 0

to turn off superradiance. In the extremal case, the
tachyonic instability can then be obtained with negative
m2 such that

−
9

4L2
≤ m2 < −

3

2L2
: ð44Þ

We choosem2 ¼ −1.492 to bring the mass squared close to
the global BF bound, and we consider a near-extremal
black hole with α ¼ 0.995. For these parameters, the
quasinormal frequencies are plotted in Fig. 6. This shows
one unstable mode, the near-horizon mode. The near-
horizon mode lies close to the real axis and is thus weakly
unstable. It is also apparently isolated, as we have not been
able to identify a second near-horizon unstable mode
when q ¼ 0.
Figure 6 also shows a tower of stable modes along the

imaginary axis; these are the zero-damped modes. They are
evenly spaced, whereas the near-horizon mode is separated
by a larger distance. However, as we increased m2 and
decreased α to turn off the near-horizon instability, the
modes re-positioned themselves into a single family.
Indeed, all modes shifted downward, with the tachyonic

mode dropping below the real axis and spacing itself evenly
at the top of the zero-damped family. Thus, the near-
horizon unstable mode is simply a member of the zero-
damped family of modes. Note that the zero-damped modes
should also be present in Fig. 5, but they are not clearly
visible due to lack of resolution in this figure, and the fact
that these modes are very closely spaced.
We would now like to understand the connection

between the modes of large and small RNAdS. To do
so, we first track the mode frequencies as the size of the
black hole is varied for q ¼ 0. Figure 7 shows the migration
of several AdS modes and the leading zero-damped mode
as rþ is varied between 0.1 and 5. We observe that the
diagonal branches of the large black hole in Fig. 5
correspond to the AdS modes for small black holes. The
importance of the different mode families seems to be
reversed for small and large RNAdS: for large black holes,
the zero-damped modes have slowest decay, whereas the
AdS modes are longest lived in the small black hole case.
Next, we increase the gauge coupling q to connect the

near-horizon mode to the general quasinormal spectrum of
Fig. 5; results are presented in Fig. 8. We observe a very
different behavior from the small black hole case of Fig. 4.
First, the modes that become unstable are the zero-damped
modes, not the AdS modes. This is not predicted by (34),
which holds only for small black holes. Once unstable,
zero-damped modes have a spectrum similar to the small
black hole AdS-mode spectrum: the mode with smallest
Reω has highest growth rate, and all unstable modes lie
within the superradiant strip. Second, the AdS mode
frequencies pass through a kink as they evolve; closer
inspection reveals that they actually merge into the tower of
zero-damped modes at large q.
Thus, the mode corresponding to the near-horizon

instability is also the fastest growing mode in the case
of a large black hole. For q > 0, this mode lies within the
superradiant strip, so violation of the near-horizon BF

FIG. 5. Continued fraction values for RNAdS with rþ ¼ 5.0
and α ¼ 0.95, and field parameters q ¼ 2, m2 ¼ −1.492. We see
two diagonal branches, and one unstable mode. Not visible due to
resolution is the set of zero-damped modes.

FIG. 6. Quasinormal modes for α ¼ 0.995, rþ ¼ 5, q ¼ 0 and
m2 ¼ −1.492. One mode in unstable here: this corresponds to the
near-horizon mode.
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bound and superradiance both contribute to its instability.
This is not the case for a small black hole, where the fastest-
growing mode is the first AdS mode, and instability occurs
even when the near-horizon BF bound is satisfied.

To summarize, for small RNAdS, unstable modes come
from the AdS branch, whereas for large RNAdS, they come
from the zero-damped branch. When the near-horizon BF
bound is violated for large black holes, the most unstable
mode also exhibits near-horizon instability. Figure 7
shows the crossover between the large and small black
hole scenarios.

IV. NONLINEAR EVOLUTION

For our nonlinear studies, we solve the system of
equations (2)–(6) numerically, with m ¼ 0. As in the rest
of the paper, we impose spherical symmetry and reflecting
boundary conditions at infinity.
In the following subsection we describe our numerical

method. We then describe the evolution for generic scalar
field initial data in Sec. IV B and the excited hairy black
hole in Sec. IV C.

A. Method

We use the same numerical code as we used in [18]. This
uses ingoing Eddington-Finkelstein coordinates ðv; rÞ,
similar to [36], but adapted to spherical symmetry.
Equations are discretized with finite differences, using
mixed second and fourth order radial derivative operators
satisfying summation by parts (see, e.g., [37,38]) and fourth
order Runge-Kutta time stepping.
The spatial domain extends from an inner radius r0,

several grid points within the apparent horizon, to infinity.
The singularity is thereby excised from the computational
domain. To reach infinity, the domain is compactified by
working with a spatial coordinate ρ ¼ 1=r, and defining a
uniform grid on the domain 0 ≤ ρ ≤ 1=r0.
Boundary data consist of the massM, which agrees with

the Abbott–Deser (AD) mass [39], and the chargeQ; initial
data are fully specified by the initial value of the scalar
field, ψðv ¼ 0Þ. The system is solved by integrating
radially inward along v ¼ constant null curves to obtain
the remaining field values and their time derivatives; ψ is
then integrated one step forward in time, and the procedure
is iterated. With ψðv ¼ 0Þ ¼ 0, this gives RNAdS with
mass M and charge Q as the solution, but more generally
some of the mass and charge is contained in the scalar field.
The characteristic formulation has some residual gauge
freedom, which we use to set the Maxwell potential to
vanish at infinity, and to set r to be the areal radius. (In [36]
this is used to fix the position of the horizon.) For further
details, including the component form of the equations and
the asymptotic conditions imposed at infinity, we refer the
reader to Appendix A and [18,40].
The scalar field can be expanded about infinity, and with

the reflecting boundary condition, this takes the form,

ψðv; rÞ ¼ φ3ðvÞ
r3

þO

�
1

r4

�
: ð45Þ

FIG. 7. Tracking of the first four AdS modes (AdSi) and the
first zero-damped mode (ZDM0) for rþ varied between 0.1 and 5
by steps of 0.05, for α ¼ 0.8, q ¼ 0, and m ¼ 0. On each
trajectory, the arrow indicates the direction of increasing rþ.
The trajectories approach a fixed point for large black holes,
which arises as a consequence of a scaling symmetry: when
rþ ≫ L, the modes are invariant under the transformation
rþ → λrþ, r− → λr−, ω → λω. This can be derived from (35).
We also find that whereas for small RNAdS, the AdS modes are
longest lived, for large RNAdS the zero-damped modes are
longest lived.

FIG. 8. Quasinormal frequencies for a large black hole with
rþ ¼ 5, α ¼ 0.95,m ¼ 0, and q varying between 0 and 10 by steps
of 0.5. In the main figure we plot trajectories for the first two zero-
damped modes and the first two AdS modes, and the arrow
indicates the direction of increasingq.We see that the zero-damped
modes become unstable for large q. The AdS mode frequencies
pass through a kink in their migration. The inset shows additional
zero-damped mode trajectories (gray dashed), and illustrates how
the second AdS mode slots itself in between two of them.
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The quantity φ3ðvÞ is an output of the simulation, and it
contains information about the mode content of the
solution. At each time v, we also compute the apparent
horizon area AAH and the distribution of charge between the
black hole and the scalar field. The black hole charge QAH
is evaluated as a flux integral of the electric field on the
apparent horizon, and the field charge is integrated over the
portion of the constant-v slice outside the apparent horizon.
The sum of these two quantities is constant in time by
charge conservation. To track the superradiant bound we
extract the electrostatic potential at the apparent hori-
zon ΦAHðvÞ.

B. Generic evolution

We now study the evolution of large RNAdS black
holes perturbed with generic scalar field configurations.
We take the background solution to have rþ ¼ 100 and
α≡Q=Qext ¼ 0.9, fixing L ¼ 1 throughout. Strictly
speaking, we only have control over the mass M and the
chargeQ (which we impose as boundary data), but we take
the initial scalar field to have very small amplitude, so to a
good approximation these directly determine the back-
ground black hole parameters.
We take the scalar field initial data to be compactly

supported outside the black hole, with profile ψðv ¼ 0Þ ¼
ðr−1 − r−11 Þ3ðr−1 − r−12 Þ3ðκ1 þ κ2 sinð10r−1ÞÞ=r2 for rþ <
r1 ≤ r ≤ r2 < ∞, and zero otherwise. The observed
dynamics are qualitatively similar to the small black hole
superradiant instability [18]: when the black hole is
unstable, charge and mass are extracted by the scalar field
until a stationary hairy black hole final state is reached. The
final state is, moreover, independent of the initial scalar
field profile.
We experimented with varying the gauge coupling q;

Fig. 9 shows the area of the apparent horizon as a function
of time for several different values. For larger q, the final
area is larger, and the growth in area happens over a much

shorter time scale. Indeed, for the smallest value, q ¼ 4, the
area grows by just a few percent, whereas for larger values,
q > 200, it more than doubles. Figures 10 and 11 show the
extraction of charge and the final radial profile of ψ ,
respectively. Indeed, the field has support closer to the
black hole for the smaller values of q, consistent with the
near-horizon instability [17]. For larger values of q, more
charge is extracted, and the field has support further from
the black hole. For very large q, nearly all the charge is
extracted, and the final state is nearly Schwarzschild, with a
scalar condensate far away. In all cases, the field profile has
a single peak, so the condensate is in its ground state.
It is useful to examine also the dynamics of the

boundary values of the scalar field, φ3ðvÞ. We present a
time-frequency analysis in Fig. 12 for the q ¼ 24 case.

FIG. 9. Normalized area of the apparent horizon as a function of
time, for initial black hole with rþ ¼ 100 and α ¼ 0.9. Different
colors correspond to different gauge coupling q.

FIG. 10. Normalized charge contained in the black hole and in
the scalar field as a function of time, for initial black hole with
rþ ¼ 100 and α ¼ 0.9. Solid curves denote scalar field charge
outside the apparent horizon, and dashed curves denote charge
within the black hole apparent horizon.

FIG. 11. End state radial profile of the scalar field, for initial
black hole with rþ ¼ 100 and α ¼ 0.9. For smaller gauge
coupling q the field has support closer to the horizon, whereas
for larger q the support is away from the black hole.
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The peaks correspond to quasinormal modes, and we see
that at early times, there are nine unstable modes, with the
fastest growth rate for the lowest frequency. As mass and
charge are extracted, however, the superradiant bound
frequency decreases, and the higher frequency modes begin
to decay (cf. Fig. 4). Eventually only the fundamental
n ¼ 0 mode remains. The final state is reached when the
superradiant bound frequency matches the n ¼ 0 mode
frequency, so that this mode becomes marginally stable.
Notice the shift in the n ¼ 0 mode frequency over a very
short time period just before saturation; this occurs because
the background solution evolves very rapidly just before
saturation, as seen in Fig. 9 and 10.

C. Excited hairy black hole

1. Initial data

We have seen in the previous subsection that the final
state for generic initial data always corresponds to the
fundamental superradiant mode, even in the case where
multiple unstable modes are present. In all cases examined,
the growth rate of individual modes decreases with increas-
ing overtone number n; the fundamental mode grows
fastest, as seen in Table I. For generic initial data—with
many modes initially excited—the evolution, after possibly
complicated dynamics, always comes to be dominated by
the fundamental mode.
Nevertheless, for special initial data—with overtone

modes excited to higher amplitude—the evolution could
be dominated (at least for some time) by n > 0 modes. If
this time is longer than the saturation time for the overtone
instability, then the system will reach the excited hairy
black hole equilibrium.
To obtain suitable initial data, we require precise over-

tone mode functions. To obtain these, we first select

parameters rþ, Q and q such that the background
RNAdS solution has multiple unstable modes, and then
we use the method of Sec. III B to calculate precise
quasinormal frequencies. We then insert the mode ansatz
ψðv; rÞ ¼ e−iωvRðrÞ in ingoing Eddington-Finkelstein
coordinates into (6) to obtain the radial equation for
frequency ω. For each desired overtone, we integrate this
ordinary differential equation numerically, with reflecting
boundary conditions at the AdS boundary. The mode can
then be taken as initial data at advanced time v ¼ 0.
We consider two types of special initial data. The first

consists of a single overtone mode ψn, which, if pure
enough, we expect to evolve into an excited hairy black
hole. The second type of initial data is a mixture of two
modes, i.e.,

ψmix ¼ amixψ2 þ ð1 − amixÞψ1; ð46Þ

with, e.g., amix ¼ 0.999, and the amplitudes normalized
using the infinity norm.With these data, we hope to achieve
a cascade, where initially a n ¼ 2 excited black hole forms,
which then decays to n ¼ 1, and then n ¼ 0. Some initial
data profiles are shown in Fig. 13.

2. Results

As in the generic evolution, we fix rþ ¼ 100,
α≡Q=Qext ¼ 0.9, and L ¼ 1. We then consider two cases
for the scalar field charge, q ¼ 8, 11. The significance of
these latter two choices is that for q ¼ 8, the background
RNAdS solution has two unstable modes, whereas for
q ¼ 11, there are three unstable modes.
q ¼ 8: In this case, modes n ¼ 0, 1 are unstable, with

initial quasinormal frequencies ω0 ¼ 978.70þ 7.34i and
ω1 ¼ 1168.69þ 4.79i. To obtain the n ¼ 1 excited hairy
black hole, we take initial data to consist of ψ1. We find
that under evolution, the mode grows exponentially and
extracts charge and mass from the black hole, similar to the
generic evolution. This causes the superradiant bound
frequency, −qΦH, to drop until it matches Reω1. (The

FIG. 12. Spectrogram of Reφ3ðvÞ for evolution starting from
rþ ¼ 100, α ¼ 0.9, and q ¼ 24. Initially there are nine unstable
modes; in the end, the final state is in the fundamental mode.
Dashed lines correspond to the quasinormal frequencies of
Table I, solid to the superradiant bound frequency, −qΦAHðvÞ.

TABLE I. Quasinormal frequencies for rþ ¼ 100, α ¼ 0.9, and
q ¼ 24. The superradiant bound frequency is −qΦH ¼ 3741.29,
from Eq. (30). The growth rate Imω decreases as the overtone
number n grows.

n ω

0 1780.01þ 17.29i
1 2277.33þ 16.59i
2 2655.28þ 14.29i
3 2952.42þ 11.97i
4 3188.37þ 9.83i
5 3374.87þ 7.89i
6 3519.76þ 6.15i
7 3628.68þ 4.55i
8 3705.19þ 3.00i
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mode frequency Reω1 evolves due to the changing back-
ground spacetime, but this is negligible compared to the
change in superradiant bound frequency.) At this point,
superradiance stops, and the system settles into the excited
hairy black hole state. The black hole is static, with the
scalar field oscillating harmonically.
The area of the apparent horizon is shown in Fig. 14

(either one of the dashed curves). The excited hairy black
hole is seen as a plateau, where the area stops growing
because the scalar field is no longer extracting mass and
charge. To this point, the description parallels that of
Sec. IV B. However, after some time, the area begins to
grow again; this is because the n ¼ 0 mode was present
and growing the entire time. Indeed, since Reω0 < Reω1,
the fundamental mode remains superradiantly unstable
even after the overtone saturates. When the amplitude of
the n ¼ 0 mode becomes large, it disrupts the static black

hole and causes its area to grow significantly. Once −qΦH
drops below Reω1, the overtone mode falls back into the
black hole, and once it reaches Reω0, superradiance stops
completely. At this point, the black hole is in its final state,
described by the n ¼ 0 ground state mode.
It is impossible to avoid triggering the n ¼ 0 mode.

At the initial time, the data for ψ1 will always have
numerical error, which will have some overlap with ψ0.
Moreover, during evolution, ψ0 will be excited nonlinearly.
To determine the origin of the observed n ¼ 0 mode, we
varied the initial perturbation amplitude, and read off the
times t1 and t0 at which the n ¼ 1 mode saturates and the
n ¼ 0 mode overtakes the dynamics, respectively. Using
the growth rates from the linear analysis we know that

log

�
A1

A0

�
¼ t0Imω0 − t1Imω1; ð47Þ

where A1 and A0 are the initial amplitudes respectively. We
used this formula to calculate the amplitude A0, given A1

and the measured t0, t1.
For sufficiently small A1, the calculated A0 has only a

mild dependence on A1 indicating the zero mode is sourced
primarily by truncation. (This was confirmed by noting the
onset of this behavior depends on the resolution, with finer
resolutions showing such behavior at smaller values of A1.)
However, for A1 ≳ 5 × 10−3, we found that

A0 ∼ A2.75�0.07
1 ; ð48Þ

This value is consistent with the seed arising from the self-
gravitating contribution of the scalar field (A0 ∝ A3

1).
Evolutions with “low” and “high” initial perturbation

amplitudes are depicted in Fig. 14. Notice that although the
saturation times differ between the two cases, the areas of
the hairy black holes are largely independent of the
amplitude of the initial data, as long as the amplitude is low.
q ¼ 11: For q ¼ 11, modes n ¼ 0, 1, 2 are unstable, with

frequencies ω0¼1174.13þ9.94i, ω1¼1448.56þ8.06i,
and ω2 ¼ 1615.34þ 5.20i. We therefore consider three
types of initial data, data with modes n ¼ 1 and n ¼ 2
individually excited, and the mixed-mode initial data (46).
Simulation results for the apparent horizon area are shown as
solid curves in Fig. 14.
The behavior for single-mode initial data is qualitatively

similar to q ¼ 8. We find, however, that the area of the
n ¼ 1 excited hairy black hole is larger than the n ¼ 2
black hole, consistent with the discussion above and
Reω1 < Reω2. The final black hole is the same in both
single-mode cases. In Fig. 15 we plot the electric charge of
the black hole and the scalar field. This shows that at
the end of the excited hairy black hole life, significant
amounts of charge are deposited back into the hole. This
corresponds to the rapid decay of overtone hair as the
superradiant bound frequency drops below the overtone

FIG. 13. Radial profiles of initial data for initial values
rþ ¼ 100, α ¼ 0.9, and q ¼ 11. Two curves correspond to
single-mode data, and the third to mixed-mode data.

FIG. 14. Normalized area of the apparent horizon for initial
rþ ¼ 100 and α ¼ 0.9. Dashed curves correspond to q ¼ 8, solid
to q ¼ 11. Excited hairy black hole solutions occur at the
temporary plateaus.
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frequency (cf. Fig. 5, where quasinormal mode decay time
scales are much shorter than growth timescales).
For mixed-mode initial data, we take mixing ratio

amix ¼ 0.999, i.e., the data are 99.9% n ¼ 2 and 0.1%
n ¼ 1. This allows then ¼ 2mode to dominate thedynamics
for early times. The length of time the n ¼ 2 will dominate
can be estimated, using a similar calculation to (47), to be
Δt¼ðlogðamix=ð1−amixÞÞþtsðImω2−Imω1ÞÞ=Imω1∼0.66,
where ts is the time at which the n ¼ 2 mode saturates.
Indeed, we observe (purple solid curve in Figs. 14 and 15)
that the system cascades through two transient excited hairy
black hole states, first n ¼ 2, then n ¼ 1, before settling in
the ground state. The hairy black hole statesmatch those seen
in the single-mode evolutions.
We present a spectrogram for the mixed-mode evolution

in Fig. 16. This shows a clear progression through the three

unstable modes. Notice again that the final n ¼ 0 oscil-
lation frequency is slightly lower than the frequency of the
initial n ¼ 0 quasinormal mode. This shift arises because
the final black hole is different from the initial one, and the
superradiant bound frequency has shifted.

V. CONCLUSIONS

In this work we computed the l ¼ 0 charged scalar
quasinormal mode spectrum for RNAdS, and in cases of
unstable modes, we numerically simulated the full non-
linear development.
The quasinormal mode analysis used the continued

fraction method, which enabled us to study regions of
parameter space that were not previously examined due to a
lack of small parameter needed for analytic studies. We
showed in particular that for large black holes, the zero-
damped mode family can become superradiantly unstable,
and exhibits behavior similar to the small black hole AdS
mode family. Furthermore, the leading unstable mode is
identified with the near-horizon condensation instability.
At the nonlinear level, we studied the evolution of these

large-RNAdS unstable modes. We showed that the generic
end point is a static black hole with a (harmonically-
oscillating) scalar condensate, similar to earlier results for
small [18] and planar [17] RNAdS. We also showed that for
black holes with multiple unstable modes, special initial
data can be chosen that evolve to a transient excited hairy
black hole solution before decaying to the generic end state.
It is tempting to draw an analogy between classical hairy

black hole energy levels and quantum energy levels of
atoms. In this picture (in AdS) the scalar field can only
exchange energy (and charge and angular momentum) with
the black hole, so the horizon plays the role of the atomic
environment. In the black hole case, however, level
transitions can only occur in the direction of decreasing
overtone number. Transitions in the reverse direction are
forbidden by the area theorem.
The reason that the final hairy black hole is always in the

n ¼ 0 configuration is because out of all quasinormal
modes, the n ¼ 0 mode has lowest Reω > 0. The super-
radiance condition is 0 < Reω < −qΦH, and as mass and
charge extraction cause the upper bound to decrease, the
n ¼ 0 mode is the last to remain unstable. We were
nevertheless able to obtain the transient excited hairy black
holes because the instability growth rates of the overtones
are comparable and wewere free to choose special overtone
initial data.
Had the growth rate of overtone modes been higher than

the fundamental mode, the situation would be somewhat
different. Although the final configuration would be
unchanged (because of the ordering of the real parts of
the frequencies), the excited hairy black hole states would
occur transiently for generic initial data. This reverse
ordering of overtone growth rates occurs for superradiantly
unstable angular harmonics of Proca fields in Kerr [41],

FIG. 15. Charge transfer as a function of time for initial data
with rþ ¼ 100, α ¼ 0.9, and q ¼ 11. Solid curves are the
(normalized) charge of the scalar field, dashed curves the charge
of the black hole, that is the charge within the apparent horizon.

FIG. 16. Spectrogram of φ3ðvÞ for mixed mode initial data,
with rþ ¼ 100, α ¼ 0.9, q ¼ 11, and aMix ¼ 0.999. This shows a
cascade through hairy black holes with n ¼ 2 → 1 → 0. Dashed
lines indicate values of the initial mode frequencies (calculated
using the linear analysis), solid corresponds to the superradiant
bound −qΦAHðvÞ.
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which is relevant to searches for ultralight dark matter [42].
It would be interesting to study any observational conse-
quences of transient overtone equilibria in this context.
Another context where the interplay between instability

criteria and growth rates leads to transient states in generic
evolutions is the superradiant instability of Kerr-AdS.
These states, however, involve different angular harmonics
rather than radial overtones. Indeed recent simulations [43]
of the Kerr-AdS superradiant instability show an evolution
dominated by a series of epochs consisting of black
resonators [44], which are themselves unstable [45].
Instability of RNAdS and subsequent hairy black hole

formation has been proposed as a holographic dual to a
superconducting phase transition [10,46]. It is intriguing to
seek also a holographic interpretation of the transient hairy
black hole equilibria that we uncovered.
More generally, our work underscores the importance of

overtone modes and nonlinear effects in black hole pertur-
bations. For perturbed black holes arising from a binary
merger, recent works [47–50] have argued for the need to
include overtones to describe the early postmerger behavior
as a combination of overtones evolving linearly in a Kerr
background. Other works, however, have demonstrated the
presence of additional nonlinear mode excitation [51,52],
sometimes through parametric instabilities [5,53]. For
weakly perturbed black holes, wemeasured a natural scaling
(48) that describes nonlinear mode excitation in RNAdS.
Further work and numerical simulations will be needed to
build intuition and understand the validity of linear analyses
in strongly perturbed regimes and how linear results can be
best combined to describe the regime of interest.
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APPENDIX A: EQUATIONS OF MOTION

In this Appendix, for completeness, we reproduce the
equations of motion from [18], which follows the general
approach of [36]. In addition to the component expressions
of Eqs. (2), (5), and (6) that we solve, we include the gauge
choices, and the corresponding boundary conditions.
We use ingoing Eddington-Finkelstein coordinates and

restrict the problem to spherical symmetry, hence the metric
takes the form

ds2 ¼ −Aðv; rÞdv2 þ 2dvdrþ Σðv; rÞ2dΩ2
2: ðA1Þ

We work in a gauge where the Maxwell field is

Aμdxμ ¼ Wðv; rÞdv; ðA2Þ

and we require ψ ¼ ψðv; rÞ. With these choices the
equations of motion take the form, for the Einstein field
equations (2),

0 ¼ ΣðdþΣÞ0 þ ðdþΣÞΣ0 −
3

2L2
Σ2 −

1

2
þ 1

8
Σ2W0; ðA3Þ

0 ¼ A00 −
4

Σ2
ðdþΣÞΣ0 þ 2

Σ2
þ ðψ 0Þ�dþψ

þ ðdþψÞ�ψ 0 − ðW0Þ2 þ iqW½ψ�ψ 0 − ðψ 0Þ�ψ �; ðA4Þ

0 ¼ dþdþΣ −
1

2
A0dþΣþ 1

2
Σjdþψ j2 þ

1

2
q2W2Σjψ j2

þ 1

2
iqWΣ½ψ�dþψ − ψðdþψÞ��; ðA5Þ

0 ¼ Σ00 þ 1

2
Σjψ 0j2; ðA6Þ

for the Maxwell equations (5),

0 ¼ ðdþWÞ0 − 1

2
A0W0 þ 2

dþΣ
Σ

W0 − 2q2Wjψ j2

þ iq½ψ�dþψ − ψðdþψÞ��; ðA7Þ

0 ¼ W00 þ 2

Σ
Σ0W0 þ iq½ψ�ψ 0 − ψðψ 0Þ��; ðA8Þ

for the Klein-Gordon equation (6),

0 ¼ 2ðdþψÞ0 þ 2
Σ0

Σ
dþψ þ 2

dþΣ
Σ

ψ 0 − iqψW0

− 2iq
Σ0

Σ
Wψ − 2iqWψ 0; ðA9Þ

where we denote f0 ≡ ∂rf, and the derivative along the
outgoing null direction, dþf ≡ ∂vf þ 1

2
A∂rf.

We impose reflecting boundary conditions at r → ∞.
These take the form

A ¼ r2

L2
þ λrþ

�
1þ L2λ2

4
− L2 _λ

�
−
2M
r

þ
�
L2λM þQ2

4

�
1

r2
þOðr−3Þ; ðA10Þ

Σ ¼ rþ L2λ=2þOðr−5Þ; ðA11Þ

W ¼ νþQ=rþOðr−2Þ; ðA12Þ
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ψ ¼ φ3=r3 þOðr−4Þ: ðA13Þ

The constants M and Q are prescribed as boundary data,
and represent the mass and charge, respectively. The
functions λðvÞ and νðvÞ represent the remaining gauge
freedom after choosing the form (A1) for the metric and
(A2) for the Maxwell field. We make the gauge choice
λ ¼ ν ¼ 0. The function φ3ðvÞ is an unknown function that
is determined by the solution.
We also use a compactified radial coordinate ρ ¼ 1=r,

and define a uniform grid on its domain. We then impose
the asymptotic conditions as boundary conditions at ρ ¼ 0.
For additional details of the reduction to a first order
system, see the Supplemental Material of [18].

APPENDIX B: CODE VALIDATION

We have confirmed the validity of both codes used
extensively in this work through self-convergence tests as
well as comparison with available results in suitable
regimes. With regards to self-convergence tests, we have
verified that as the number of terms employed in the
continued fraction method is increased, our results asymp-
tote to consistent results and, that typically this takes place
when N⪆3000 (see Fig. 17). Convergence of the nonlinear
code has been recently demonstrated in [18]. As mentioned,
we also compare with specific results; in particular: our
QNM frequencies obtained in our linear analysis agree with
those obtained in [54] in the Schwarzschild-AdS limit
(Q ¼ 0, q ¼ 0) to better than 1.2% for the real part of ω

and better than 0.5% for the imaginary part of ω. In the
charged, small black hole case, our results agree with those
presented in [21] to better than 0.1%. An example of these
comparisons is given in Tables II, III. In the large black hole,
small charge regime, our results agree with those in [55] to
better than 7.5%and 4% for the real and imaginary parts ofω
respectively. We have also confirmed solutions obtained
with our full nonlinear simulations illustrate initial growth
rates—in the unstable regime–and black hole QNMs con-
sistent with the expected results from our linear studies.

FIG. 17. Imaginary part of the NH mode as a function of the
number of terms used in the continued fraction N, for different
values of the extremality parameter a. We can observe that
convergence is more difficult when a gets closer to 1, as the
equations used break down.

TABLE II. QNMs found by the linear analysis for a Schwarzs-
child black hole (a ¼ 0, q ¼ 0) and comparison with the results
of [54] (Table 1). We can see our values agree completely with the
previous results.

Values of [54] Our values

rþ ReðωÞ ImðωÞ ReðωÞ ImðωÞ
0.4 2.3629 −1.0064 2.3629 −1.0065
0.6 2.4316 −1.5797 2.4316 −1.5797
0.8 2.5878 −2.1304 2.5878 −2.1304
1 2.7982 −2.6712 2.7982 −2.6712
5 9.4711 −13.3255 9.4711 −13.3255
10 18.6070 −26.6418 18.6070 −26.6418
50 92.4937 −133.1933 92.4937 −133.1933
100 184.9534 −266.3856 184.9534 −266.3856

TABLE III. QNMs found by the linear analysis for a small black
hole (rþ ¼ 0.1) and comparison with the results of [21] (Table 2).
We can see our values agree completely with the previous results.

Values of [21] Our values

q a ReðωÞ ImðωÞ ReðωÞ ImðωÞ
0 0 2.6928 −1.0095 × 10−1 2.6928 −1.0096 × 10−1

0.2 2.6801 −1.0434 × 10−1 2.6801 −1.0434 × 10−1

0.4 2.6410 −1.1625 × 10−1 2.6411 −1.1626 × 10−1

0.6 2.5723 −1.4417 × 10−1 2.5723 −1.4417 × 10−1

0.8 2.4787 −2.0756 × 10−1 2.4788 −2.0757 × 10−1

0.9 2.4332 −2.5493 × 10−1 2.4332 −2.5493 × 10−1

2 0.2 2.7614 −8.1233 × 10−2 2.7615 −8.1233 × 10−2

0.4 2.8058 −6.7765 × 10−2 2.8059 −6.7765 × 10−2

0.6 2.8256 −5.8950 × 10−2 2.8257 −5.8950 × 10−2

0.8 2.8161 −5.6894 × 10−2 2.8161 −5.6894 × 10−2

0.9 2.7977 −6.3772 × 10−2 2.7978 −6.3773 × 10−2

4 0.2 2.8414 −6.1698 × 10−2 2.8415 −6.1698 × 10−2

0.4 2.9650 −3.4408 × 10−2 2.9650 −3.4408 × 10−2

0.6 3.0672 −1.3945 × 10−2 3.0672 −1.3946 × 10−2

0.8 3.1515 1.7314 × 10−3 3.1515 1.7314 × 10−3

0.9 3.1878 6.5742 × 10−3 3.1879 6.5744 × 10−3
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