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Wedescribe the full nonlinear development of the superradiant instability for a chargedmassless scalar field
coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti–de Sitter
black hole. The presence of the negative cosmological constant provides a natural context for considering
perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedlywith
the black hole. At early times, small superradiant perturbations grow as expected from linearized studies.
Backreaction then causes the black hole to lose charge and mass until the perturbation becomes non-
superradiant,with the final state described by a stable hairy blackhole. For largegauge coupling, the instability
extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the
implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
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Introduction.—A bosonic field can extract energy from a
rotating black hole (BH) through superradiant scattering
[1,2], resulting in an increase in field amplitude. If, in
addition, the field is reflected by a potential barrier
sufficiently far away, then this amplification process
repeats, resulting in exponential growth. This is known
as the superradiant instability or “black hole bomb” [3].
Since in global anti–de Sitter (AdS) spacetime, naturally
reflecting boundary conditions at I can be defined,
asymptotically AdS black holes with ergoregions are
subject to the superradiant instability [4–6].
A similar process occurs for Reissner-Nordström (RN)

BHs [4,7–9], with the charge playing the role of the angular
momentum. There, a charged scalar field mode with time
dependence ψ ∼ e−iωt is superradiantly amplified if ωrH <
qQ (rH is the BH outer horizon radius, Q is the BH charge,
and q is the gauge coupling of the scalar field). In the RN-
AdS case [4,10], the reflecting boundary implies that there is
a minimum mode frequency, so the instability sets in when
Qq > ð3rH=LÞ, where L is the AdS scale (in the limit of
small rH=L).
When perturbations are small, the description above is

valid and a linearized analysis is suitable; several studies
have determined the quasinormal mode spectra of, e.g.,
Kerr-AdS [5,11] and RN-AdS [10]. As the perturbation
grows, however, the backreaction on the spacetime
becomes significant, and this description breaks down.
Less is known about the final state of the instability,

although it is, in general, expected to be a “hairy” BH. In
the RN-AdS case, static BHs surrounded by a scalar field
condensate have been constructed and have been conjec-
tured to be the end point of the instability [12,13]. In the
Kerr-AdS case, rotating BHs with a single helical Killing
vector field have been constructed [14], but these BHs are

unstable themselves and are, therefore, not plausible end
points. The final state might be a hairy BH without any
symmetries, or the instability may lead to a violation of
cosmic censorship [15]. Further complication arises from
the fact that gravitational interactions can result in signifi-
cant nonlinear mode coupling in confined geometries such
as AdS, where dissipation is low [16,17].
It is of wide interest to have a more complete picture of

the dynamics and end point of the superradiant instability.
In astrophysics, the instability is used to constrain dark
matter models and may lead to observable gravitational
wave emissions [18–20]. In holography (AdS=CFT [21]
and Kerr=CFT [22]), superradiance manifests within the
CFT [11,23–26], and the nonlinear evolution plays a role in
determining the final thermal state. Finally, questions of
BH instabilities are of theoretical interest in classical
general relativity [6,27,28].
Fully analyzing the superradiant instability is compli-

cated by several factors: large differences in scale between
the BH and perturbation, long instability time scales, fully
nonlinear equations (Einstein and other fields), and an
intrinsically (3þ 1)-dimensional problem. Thus, nonlinear
simulations, while the obvious approach, are challenging
[29,30]; however, see Ref. [31]. In the charged case,
however, the instability is present even in spherical sym-
metry, and the instability time scale is shorter. By studying
this case, one could hope to draw general conclusions that
could be applied more broadly.
In this Letter, we study the nonlinear evolution of the

superradiant instability of RN-AdS BHs in spherical
symmetry. We verify the initial growth rates predicted
from the linear theory, and we confirm expectations that the
final state is a hairy BH. (These results are consistent with
very recent results of Ref. [32] for the case of RN
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surrounded by an artificial mirror, which appeared while we
were completing our work. Working in AdS provides a
natural setting free of ambiguities and potential sources of
constraint violations.) At intermediate times, we track the
dynamics of individual modes as charge and mass are
nonlinearly extracted from the BH, and we arrive at an
intuitive picture of the behavior. In particular, within this
picture, the behavior characterized as a “bosenova” of
Ref. [32] for large values of q can be easily understood.
Model.—We follow the conventions of Ref. [33], and we

work in d ¼ 4 dimensions. The Lagrangian density is

16πGNL ¼ Rþ 6

L2
−
1

4
FabFab − jDaψ j2; ð1Þ

where Da ≡∇a − iqAa is the gauge covariant derivative.
This gives rise to the Einstein equation

Gab −
3

L2
gab ¼ 8πTψ

ab þ 8πTEM
ab ; ð2Þ

where the stress-energy tensors are

8πTEM
ab ¼ 1

2

�
gcdFacFbd −

1

4
gabFcdFcd

�
; ð3Þ

8πTψ
ab ¼

1

2
½ðDaψÞ�ðDbψÞ þ c:c:� − 1

2
gabjDcψ j2: ð4Þ

The Maxwell and scalar field equations are

∇bð∇bAa −∇aAbÞ ¼ iqψ�Daψ − iqψðDaψÞ�; ð5Þ

DaDaψ ¼ 0: ð6Þ

The RN-AdS BH solves the field equations, with metric
ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2

2, where f¼1−ð2M=rÞ þ
ðQ2=4r2Þþðr2=L2Þ, Maxwell field Aμdxμ ¼ ½ðQ=rÞ−
ðQ=rHÞ�dt, and ψ ¼ 0. The −ðQ=rHÞ term in the
Maxwell field is a gauge choice to have the field vanish
at the horizon.
Numerical method.—Our simulations follow the general

approach of Ref. [34]. We adopt ingoing Eddington-
Finkelstein coordinates and spherical symmetry (this dif-
fers from the analysis of Ref. [35], which imposed planar
symmetry and studied the nonlinear evolution of a holo-
graphic superconductor) so that the metric takes the form

ds2 ¼ −Aðv; rÞdv2 þ 2dvdrþ Σðv; rÞ2dΩ2
2: ð7Þ

For the Maxwell field, we work in a gauge where

Aμdxμ ¼ Wðv; rÞdv; ð8Þ

and we require ψ ¼ ψðv; rÞ. With these choices, the
equations of motion (2), (5), and (6) take the form

Einstein:

0 ¼ ΣðdþΣÞ0 þ ðdþΣÞΣ0 −
3

2L2
Σ2 −

1

2
þ 1

8
Σ2W0; ð9Þ

0 ¼ A00 −
4

Σ2
ðdþΣÞΣ0 þ 2

Σ2
þ ðψ 0Þ�dþψ

þ ðdþψÞ�ψ 0 − ðW0Þ2 þ iqW½ψ�ψ 0 − ðψ 0Þ�ψ �; ð10Þ

0 ¼ dþdþΣ −
1

2
A0dþΣþ 1

2
Σjdþψ j2 þ

1

2
q2W2Σjψ j2

þ 1

2
iqWΣ½ψ�dþψ − ψðdþψÞ��; ð11Þ

0 ¼ Σ00 þ 1

2
Σjψ 0j2; ð12Þ

Maxwell:

0 ¼ ðdþWÞ0 − 1

2
A0W0 þ 2

dþΣ
Σ

W0 − 2q2Wjψ j2

þ iq½ψ�dþψ − ψðdþψÞ��; ð13Þ

0 ¼ W00 þ 2

Σ
Σ0W0 þ iq½ψ�ψ 0 − ψðψ 0Þ��; ð14Þ

Scalar:

0 ¼ 2ðdþψÞ0 þ 2
Σ0

Σ
dþψ þ 2

dþΣ
Σ

ψ 0 − iqψW0

− 2iq
Σ0

Σ
Wψ − 2iqWψ 0; ð15Þ

where we denote f0 ≡ ∂rf and the derivative along the
outgoing null direction, dþf ≡ ∂vf þ 1

2
A∂rf.

The equations of motion are solved imposing reflecting
boundary conditions at r → ∞. These take the form

A ¼ r2

L2
þ λrþ

�
1þ L2λ2

4
− L2 _λ

�
−
2M
r

þ
�
L2λM þQ2

4

�
1

r2
þOðr−3Þ; ð16Þ

Σ ¼ rþ L2λ=2þOðr−5Þ; ð17Þ
W ¼ νþQ=rþOðr−2Þ; ð18Þ
ψ ¼ φ3=r3 þOðr−4Þ: ð19Þ

The constants M and Q represent the Arnowitt-Deser-
Misner (ADM) mass and charge, respectively; these are
prescribed as boundary data. The functions λðvÞ and νðvÞ
represent the remaining gauge freedom after putting the
metric and Maxwell fields into the forms (7) and (8). We
make the further gauge choice that λ ¼ ν ¼ 0. Finally the
function φ3ðvÞ is an unknown function that is determined
by the solution.
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The procedure to integrate the equations is as follows:
On an initial time slice v ¼ v0, we prescribe the function
ψðv0; rÞ. We then integrate radially inwards in r [and
subject to the asymptotic conditions (16)–(19)] Eqs. (9),
(10), (12), (14), and (15) to obtain dþΣ, A, Σ,W, and dþψ ,
respectively, at time v ¼ v0. From dþψ , ψ , and A, we
obtain ∂vψ at time v ¼ v0. By integrating in time, we
obtain ψ at the next time step. The procedure may then be
iterated. Equations (11) and (13) are redundant, and we use
these as independent residuals to test our code.
We use finite differences, using a mixed second and

fourth order radial and fourth order in time Runge-Kutta
method. The spatial domain extends from an inner radius
r0—several grid points within the BH—to infinity. In fact,
we compactify this domain by introducing a new spatial
coordinate ρ ¼ 1=r. This gives rise to a compact domain
0 ≤ ρ ≤ 1=r0, which we discretize in a uniform grid.
For initial data, we take the scalar field to be compactly

supported, with ψ ¼ ðr−1 − r−11 Þ3ðr−1 − r−12 Þ3=r2½κ1 þ
κ2 sinð10=rÞ� if r ∈ ½r1; r2� (and zero otherwise). For
production runs, we typically use fκ1; κ2g ¼ 10−4, so the
scalar field is initially negligible compared to the BH, and
fr1; r2g ¼ f2M; 3Mg. We checked by varying fκ1; κ2g that
different initial data do not affect the features of the final
solution, provided the amplitude is small. We set L ¼ 1,
M ¼ 0.1, and Q ¼ −0.18115; this corresponds to a BH
small compared to the AdS scale (rH ¼ 0.138), with
charge 63.9% of the critical value. Excellent accuracy
is obtained with grid sizes of N ¼ 1600nþ 1 points
(with n ¼ 1 for low q and n ¼ 2, 3 for higher ones),
and we have thoroughly tested our implementation (see the
Supplemental Material [36]).
Results.—Having fixed M and Q, we varied the gauge

coupling q of the scalar field. At early times, simulations
reveal that for sufficiently small q≲ ð3rH=QLÞ, the field
decays, resulting in rapid ringdown to RN-AdS. For slightly
larger q, a growing mode is present, and the instability
ensues. We checked that the initial growth rate—while the
perturbation remains small—matches the prediction of
Ref. [10] in the linearized case. At later times, the perturba-
tion becomes nonlinear, as backreaction on the BH becomes
significant, with the spacetime eventually settling into a
stationary hairy BH.
The superradiant cases display the following character-

istics: (i) The scalar field eventually saturates in amplitude
and has harmonic time dependence (previously constructed
hairy black holes [12,13] have static ψ ; this difference
arises because these works make the gauge choice that the
Maxwell field vanishes at the horizon, whereas we set it to
zero at infinity) resulting in a time-independent stress-
energy tensor and metric. (ii) Significant amounts of charge
[measured at the apparent horizon (AH)] are extracted from
the BH by the scalar field, with more extracted at larger q.
(iii) The irreducible mass of the BH (proportional to the
square root of the area; as the stationary stage is reached,

the AH location coincides with the event horizon)
approaches that of a Schwarzschild-AdS BH of mass M,
with closer approach for larger q. This implies that less
mass is extracted for larger q. (iv) The scalar hair is
distributed farther away from the BH for larger q. (This
observation highlights the difference between placing an
artificial boundary at some location with respect to the BH
vs at the boundary of AdS.) (v) The approach to the final
state is less smooth for larger q, in a sense that will be
described below.
In Fig. 1, we show the irreducible mass and charge of the

BH vs time, for various choices of q. In the left figure, we
compare the irreduciblemassMirr of theAHofour dynamical
BH with that of a (uncharged) Schwarzschild-AdS BH
with mass M (we denote this quantity M0). As expected
from the area theorem, the irreducible mass (entropy)
never decreases. For small q, Mirr displays very smooth
approach to its final value, while for large q, it displays some
steplike behavior prior to reaching a plateau. Moreover, for
large q, the ratio Mirr=M0 → 1, as depicted in Fig. 4.
The right side of Fig. 1 shows the charge, both of the AH,

and the integrated charge (at each constant time surface and
outside the AH) of the scalar field (by charge conservation,
these must sum to the ADM chargeQ). The charge displays
much more interesting behavior than the irreducible mass,
including some up-and-down oscillations. As withMirr, the
low-q case is smoothest. We find that for large q, nearly all
of the charge can be extracted from the BH. This contrast
between the mass and charge extracted arises because the
charge-to-mass ratio of the final state scalar field mode is
larger for larger q.
The less smooth behavior of the instability at largeq can be

understood by studying themode content. In Fig. 2, we show
a spectrogram of an evolution, where we plot the frequency
content of φ3ðvÞ vs time. This reveals the individual modes
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FIG. 1. (Left) (Normalized) Irreducible mass vs time for
representative values of q. As q is increased, the growth rate
increases as well. (Right) Charge within the AH (solid) and the
charge of the scalar field outside on a constant-v slice (dashed) vs
time. As the value of q is increased, the dynamical time scale
shortens. For even smaller q (not shown), curves are very smooth,
with no steps or oscillations. (Note that for the initial data
employed, for the largest-q case, most of the scalar field energy
falls immediately into the BH as it backscatters off itself, resulting
in a smaller effective initial perturbation.)
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present in the solution and their growth or decay as a function
of time. The initial data contain a large number of modes,
with real frequenciesReðωnÞ ≈ ð2nþ 3Þ=Lþ C in the small
BH limit. Most of these do not satisfy the superradiance
condition, and they decay rapidly [10]. The lower-frequency
modes, however, with ð2nþ 3Þ≲ ðqQL=rHÞ, are unstable
and are visibly growing exponentially in the spectrogram
[lower-ReðωnÞ modes grow more rapidly]. (In Fig. 2, there
are eight suchmodes.) Over time, thesemodes extract charge
and mass from the BH, and one by one (starting at large n)
they begin to decay and are reabsorbed by theBH. In the end,
the BH is discharged to the level where the fundamental
(n ¼ 0) mode has zero growth rate, and it remains as the
condensate.
The oscillations of Fig. 1 can be now understood as an

effect of having a mixture of modes, some of which are
extracting and others depositing charge and mass into the
BH. In the end, the BH reaches the hairy state, with all the
higher modes having decayed. Similar oscillations for
larger-q evolutions were misinterpreted as a bosenova, or
explosion, in Ref. [32]. (The bosenova of Refs. [18,19]
arises instead when axion self-interactions cause a collapse
of the axion field.) Indeed, for q just above the instability
threshold, there is only a single mode, and evolution
displays a very smooth approach to the stationary end state.
Radial profiles of the final state are illustrated in Fig. 3. On

the left, we plot the Misner-Sharp mass MMSðrÞ (suitably
defined so as to take into account the contribution of the AdS
curvature [40]) as a functionof radius.Asq is increased,MMS
increases in value at the AH, again confirming that less mass
is extracted. As I is approached,MMS → M. Moreover, for
largeq,MMS is constant in r near theBH,while for smallq, it

grows. This, together with the right figure, shows that the
scalar field condensate and the electric field are localized
farther away from the BH for larger q.
Finally, Fig. 4 shows the normalized irreducible mass of

the final state BH as a function of q. As q is increased,
Mirr=M0 → 1. (For q ¼ 5000, Mirr=M0 ≈ 99.5%.) This,
together with the radial profile information, indicates that
at late times and large q, the BH region approaches
Schwarzschild-AdS, surrounded by a distant low-mass
high-charge condensate.
Final words.—We have described the full dynamical

behavior of the charged superradiant instability in AdS.
Initially, superradiant modes extract charge and mass from
the BH and grow exponentially [41]. As this process
unfolds, the higher-frequency modes cease to be super-
radiant, and fall back into the BH, returning energy and
charge and resulting in nontrivial dynamics. Eventually, the
fundamental mode remains as a condensate, with zero
growth. While nonlinear couplings between modes (via
gravity and electromagnetism) can generate higher-
frequency modes in AdS [16,17], any such processes are

FIG. 2. Spectrogram showing logarithm of amplitude of Fourier
transform of φ3ðvÞ as a function of time. This is computed by
partitioning the time axis into intervals of length Δv ¼ 4π and
performing discrete Fourier transforms on these intervals. The
intervals overlap, with starting points offset by δv ¼ π=8. The
case here has q ¼ 12, rH ¼ 0.2, andQ set to 80% of the extremal
value. At early times, the lowest eight modes grow exponentially,
with faster growth for lower frequencies. As charge and mass are
extracted, all modes (aside from the fundamental) eventually start
to decay, with higher frequencies decaying first. The growth rate
of the fundamental approaches zero, leaving a final static BH with
a harmonically oscillating scalar condensate.
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FIG. 3. (Left) Misner-Sharp mass vs radius for representative
values of q, measured for the late-time static spacetime. For large
values of q, MMS is constant to relatively large radial distance,
indicating that BH is essentially uncharged and the scalar field
hair lies far away from it. At larger radii, a radial dependence
arises because of the presence of both the electromagnetic and
scalar fields. (Right) Norm (squared and rescaled by r4) of the
scalar field, also at late times. The field is localized far from the
BH for large values of q.
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FIG. 4. Normalized irreducible mass vs q. As q is increased,
Mirr=M0 → 1. This is consistent with the claim that the final BH
state for sufficiently large values of q is a Schwarzschild-AdS
black hole of mass M (the ADM mass), surrounded by a distant
high charge, low-mass scalar field condensate.
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overwhelmed by the fact that in the end, all modes beyond
the fundamental are decaying. The ultimate fate is a stable
hairy BH, with the scalar condensate distributed far away
from the BH for large q.
Among the scalar modes, the final mode that remains

maximizes the charge-to-mass ratio q=ω, and its growth
corresponds to maximizing the entropy increase of the BH.
This observation may elucidate possible behavior of the
superradiant instability in the rotating case. For a Kerr-AdS
BH, the stability criterion for a mode is ω < mΩH, where
ΩH is the angular frequency of the BH, andm the azimuthal
number of the perturbation [4]. This is comparable with the
condition ωrH < qQ in the charged case, but with the key
difference that m can take any integer value, whereas q is a
fixed parameter of the system. In the rotating case, a given
perturbation may be expected to spin down the black hole
to the point where only the most superradiant mode remains
(i.e., that which causes the black hole to maximize its
entropy) but now just marginally stable. It would be
interesting to examine the superradiant mode frequencies
in Kerr-AdS presented in Ref. [11] from this point of view;
it is plausible that the final (i.e., most superradiant) mode
has m → ∞, consistent with speculation of Ref. [15].
Finally, in astrophysical applications, the outer potential

barrier is no longer infinite (as in AdS) and is instead
typically provided by a mass term for the field [18,42,43].
Such a case provides a cutoff in mode energy and on the
efficiency of energy extraction.
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