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For a real massless scalar field in general relativity with a negative cosmological constant, we uncover a
large class of spherically symmetric initial conditions that are close to anti–de Sitter space (AdS) but whose
numerical evolution does not result in black hole formation. According to the AdS/conformal field theory
(CFT) dictionary, these bulk solutions are dual to states of a strongly interacting boundary CFT that fail to
thermalize at late times. Furthermore, as these states are not stationary, they define dynamical CFT
configurations that do not equilibrate. We develop a two-time-scale perturbative formalism that captures
both direct and inverse cascades of energy and agrees with our fully nonlinear evolutions in the appropriate
regime. We also show that this formalism admits a large class of quasiperiodic solutions. Finally, we
demonstrate a striking parallel between the dynamics of AdS and the classic Fermi-Pasta-Ulam-Tsingou
problem.
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Introduction.—The gauge theory–string theory corre-
spondence [1] has become a valuable tool to study non-
equilibriumphenomena in strongly interacting quantum field
theories [2–4]. In a particular limit, this correspondence links
general relativity (GR) in ðdþ 1Þ-dimensional asymptoti-
cally anti–de Sitter (AdSdþ1) spacetimes with d-dimensional
conformal field theories. A question of particular importance
in field theory is to understand the process of equilibration
and thermalization. This corresponds, in the bulk, to the
collapse of an initial perturbation to a black hole.
In the first detailed analysis [5] of the dynamics of

perturbations of global AdS4, Bizoń and Rostworowski
argued that (except for special nonresonant initial data) the
evolution of a real, massless, spherically symmetric scalar
field always results in gravitational collapse, even for
arbitrarily small initial field amplitude ϵ. At the linear level,
this system is characterized by a normalmode spectrumwith
natural frequencies ωj ¼ 2jþ 3. Using weakly nonlinear
perturbation theory, these authors described the onset of
instability as a result of resonant interactions between the
normal modes. Because of the presence of a vast number of
resonances, they argued that thismechanism leads to a direct
turbulent cascade of energy to high mode numbers, making
gravitational collapse inevitable. Higher mode numbers are
more sharply peaked, so this corresponds to an effect of
gravitational focusing.
The analysis of Ref. [5] also showed that, for initial data

consisting of a single mode, the dominant effect of resonant
self-interaction could be absorbed into a constant shift in
the frequency of the mode. (This time-periodic solution
was confirmed to persist at higher nonlinear order [6].)

However, for two-mode initial data, additional resonances
are present that cannot be absorbed into frequency shifts.
The result is secular growth of higher modes.
The turbulent cascade described in Ref. [5] is a beautiful

mechanism for the thermalization of strongly coupled
quantum field theories with holographic gravitational
duals. However, it was recently pointed out that this
cascade argument breaks down if all modes are initially
populated, and the mode amplitudes fall off sufficiently
rapidly for high mode numbers [7]. In this case, all resonant
effectsmay once again be absorbed into frequency shifts and
black hole collapse is avoided. Low-lying modes have
broadly distributed bulk profiles. Thus, one might expect
that if the initial scalar profile is broadly distributed, its
evolution might not result in gravitational collapse (see also
Refs. [8–10]). This predictionwas verified numerically [11].
The physical mechanism responsible for the collapse or
noncollapse of small amplitude initial data is a competition
between two effects: gravitational focusing and nonlinear
dispersion of the propagating scalar field. If the former
dominates, gravitational collapse ensues [5]. If the latter
does, the system evolves without approaching any identi-
fiable static or stationary solution—the perturbed boundary
CFT neither thermalizes nor equilibrates at late times [11].
The perturbation theory of Ref. [5] cannot make pre-

dictions at late times. (The growth of secular terms in the
expansion causes a breakdown at time t ∝ 1=ϵ2.) It also
does not properly take into account energy transfer between
modes. In this Letter, we undertake a thorough analysis of
the dynamics of AdS by making use of a new perturbative
formalism for analyzing the effect of resonances on the
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evolution of this system that is valid for long times. We also
perform fully nonlinear GR simulations (see Refs. [7,11]
for details of our numerical implementation and validation).
In the process, we uncover a close relationship between the
dynamics of AdS and the famous Fermi-Pasta-Ulam-
Tsingou (FPUT) problem [12,13]. Our formalism is based
on a two-time-scale approach [14], where we introduce a
new “slow time” τ ¼ ϵ2t. The time scale τ characterizes
energy transfers between modes, whereas the “fast time” t
characterizes the original normal modes. Importantly, this
formalism allows one to study the system for long times and
examine energy transfer between modes. In the following,
we describe the “two time framework” (TTF) and determine
a large class of quasiperiodic solutions that extends the
single-mode periodic solutions ofRefs. [5,6]. These solutions
have finely tuned energy spectra such that the net energy
flow into each mode vanishes, and they appear to be stable to
small perturbations within both TTF and full numerical
simulations. We then study the behavior of two-mode initial
data of Ref. [5] under both approaches. Finally, we use the
TTF equations to draw an interesting parallel between
scalar collapse in AdS and the FPUT problem of thermal-
ization of nonlinearly coupled oscillators [12].
Model.—Following Ref. [5], we consider a self-

gravitating, real scalar field ϕ in asymptotically AdS4
spacetime. Imposing spherical symmetry, the metric takes
the form

ds2 ¼ 1

cos2x
ð−Ae−2δdt2 þ A−1dx2 þ sin2xdΩ2Þ; ð1Þ

where we set the asymptotic AdS radius to 1. Spherical
symmetry implies that A, δ, and ϕ are functions of time
t ∈ ð−∞;∞Þ and the radial coordinate x ∈ ½0; π=2Þ.
In terms of the variables Π≡ eδ _ϕ=A and Φ≡ ϕ0, the

equation of motion for ϕ is

ϕ̈¼ð _Ae−δ−A_δe−δÞΠþA2e−2δΦ0

þ
�

2

sinxcosx
A2e−2δþAA0e−2δ−A2e−2δδ0

�
Φ; ð2Þ

while the Einstein equation reduces to the constraints,

A0 ¼ 1þ 2sin2x
sin x cos x

ð1 − AÞ þ sin x cos xAðjΦj2 þ jΠj2Þ; ð3Þ

δ0 ¼ − sin x cos xðjΦj2 þ jΠj2Þ: ð4Þ

Two time framework.—TTF consists of defining the slow
time τ ¼ ϵ2t and expanding the fields as

ϕ ¼ ϵϕð1Þðt; τ; xÞ þ ϵ3ϕð3Þðt; τ; xÞ þOðϵ5Þ; ð5Þ

A ¼ 1þ ϵ2Að2Þðt; τ; xÞ þOðϵ4Þ; ð6Þ

δ ¼ ϵ2δð2Þðt; τ; xÞ þOðϵ4Þ: ð7Þ

It is possible to go beyond Oðϵ3Þ by introducing additional
slow time variables. However, the order of approximation
used here is sufficient to capture the key aspects of weakly
nonlinear AdS collapse in the ϵ → 0 limit.
Perturbative equations are derived by substituting the

expansions (5)–(7) into the equations of motion (2)–(4) and
equating powers of ϵ. It is important to note that when
taking time derivatives of a function of both time variables
we have ∂t → ∂t þ ϵ2∂τ. At OðϵÞ, we obtain the wave
equation for ϕð1Þ linearized off exact AdS,

∂2
tϕð1Þ ¼ ϕ00

ð1Þ þ
2

sin x cos x
ϕ0
ð1Þ ≡ −Lϕð1Þ: ð8Þ

The operator L has eigenvalues ω2
j ¼ ð2jþ 3Þ2 (j ¼ 0;

1; 2;…) and eigenvectors ejðxÞ (“oscillons”) [5]. Explicitly,

ejðxÞ ¼ djcos3x2F1

�
−j; 3þ j;

3

2
; sin2x

�
; ð9Þ

with dj ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 1Þðjþ 2Þp

=
ffiffiffi
π

p
. The oscillons form an

orthonormal basis under the inner product

ðf; gÞ ¼
Z

π=2

0

fðxÞgðxÞtan2xdx: ð10Þ

The general real solution to Eq. (8) is

ϕð1Þðt; τ; xÞ ¼
X∞
j¼0

ðAjðτÞe−iωjt þ ĀjðτÞeiωjtÞejðxÞ; ð11Þ

where AjðτÞ are arbitrary functions of τ, to be deter-
mined later.
At Oðϵ2Þ the constraints (3)–(4) have solutions

Að2ÞðxÞ ¼ −
cos3x
sin x

Z
x

0

ðjΦð1ÞðyÞj2 þ jΠð1ÞðyÞj2Þtan2ydy;
ð12Þ

δð2ÞðxÞ ¼ −
Z

x

0

ðjΦð1ÞðyÞj2 þ jΠð1ÞðyÞj2Þ sin y cos ydy:
ð13Þ

Finally, at Oðϵ3Þ we obtain the equation for ϕð3Þ,

∂2
tϕð3Þ þ Lϕð3Þ þ 2∂t∂τϕð1Þ ¼ Sð3Þðt; τ; xÞ; ð14Þ

where the source term is

Sð3Þ ¼ ∂tðAð2Þ − δð2ÞÞ∂tϕð1Þ − 2ðAð2Þ − δð2ÞÞLϕð1Þ

þ ðA0
ð2Þ − δ02Þϕ0

ð1Þ: ð15Þ

The solutions (12)–(13) for Að2Þ and δð2Þ are substituted
directly into Sð3Þ. In general, the source term Sð3Þ contains

PRL 113, 071601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

15 AUGUST 2014

071601-2



resonant terms (i.e., terms proportional to e�iωjt). As noted
in Ref. [5], for all triads ðj1; j2; j3Þ, resonances occur at
ωj¼ωj1þωj2−ωj3 . In ordinary perturbation theory, these
resonances lead to secular growths in ϕð3Þ. However,
Ref. [5] showed that in some cases the growths may be
absorbed into frequency shifts. TTF provides a natural way
to handle these resonances by taking advantage of the new
term 2∂t∂τϕð1Þ in Eq. (14) and the freedom in AjðτÞ.
We now project Eq. (14) onto an individual oscillon

mode ej and substitute for ϕð1Þ,

ðej; ∂2
tϕð3Þ þ ω2

jϕð3ÞÞ − 2iωjð∂τAje−iωjt − ∂τĀjeiωjtÞ
¼ ðej; Sð3ÞÞ: ð16Þ

By exploiting the presence of terms proportional to e�iωjt

on the left-hand side of the equation, we may cancel off the
resonant terms on the right-hand side. Denoting by f½ωj�
the part of f proportional to eiωjt, we set

−2iωj∂τAj ¼ðej;Sðt;τ;xÞÞ½−ωj� ¼
X
klm

SðjÞ
klmĀkAlAm; ð17Þ

where SðjÞ
klm are real constants representing different reso-

nance channel contributions. The right-hand side is a cubic
polynomial in Aj and Āj. Thus, we have obtained a set of
coupled first-order ordinary differential equations in τ for
Aj, which we shall refer to as the “TTF equations.” The
equations are to be solved given the initial conditions for ϕ.
This procedure fixes the arbitrariness in the solution (11)
for ϕð1Þ. While we could also solve for ϕð3Þ, this would be of
little interest since the lack of resonances remaining in
Eq. (14) implies that ϕð3Þ remains bounded.
Under evolution via the TTF equations, both the ampli-

tude and phase of the complex coefficients AjðτÞ can vary.
Thus, in contrast to the perturbative analysis in Ref. [5], the
energy per mode Ej ¼ ω2

j jAjj2 can change with time in a
very nontrivial manner. However, it can be checked that the
total energy E¼P

jEj is conserved. TTF, thus, describes
an energy-conserving dynamical system. The TTF equa-
tions also possess a scaling symmetry AjðτÞ→ϵAjðτ=ϵ2Þ.
This symmetry was observed in Fig. 2(b) of Ref. [5], which
indicates that the instability mechanism is captured by TTF.
In practice, it is necessary to truncate the TTF equations

at finite j ¼ jmax. We evaluated SðjÞ
klm up to jmax ¼ 47. In

particular, under truncation to jmax ¼ 0, the equations
reduce to

iπ∂τA0 ¼ 153A2
0Ā0; ð18Þ

with solution A0ðτÞ¼A0ð0Þexpð−ið153=πÞjA0ð0Þj2τÞ. This
reproduces precisely the single-mode frequency shift result
of Ref. [5].
Quasiperiodic solutions.—To understand the dynamics

of TTF, we first look for quasiperiodic solutions. For

jmax ¼ 0, this is the periodic solution above. For general
jmax > 0 we take as ansatz Aj ¼ αj expð−iβjτÞ, where
αj; βj ∈ R are independent of τ. These solutions have
Ej ¼ constant, so they represent a balancing of energy
fluxes such that each mode has constant energy. By
substitution into the TTF equations, the τ dependence
can be canceled by requiring βj ¼ β0 þ jðβ1 − β0Þ. This
leaves jmax þ 1 algebraic equations,

−2ωjαj½β0 þ jðβ1 − β0Þ� ¼
X
kmn

SðjÞ
kmnαkαmαn; ð19Þ

for jmax þ 3 unknowns ðβ0; β1; fαjgÞ. The equations for
j ¼ 0; 1may be used to eliminate ðβ0; β1Þ, leaving jmax − 1
equations to be solved for fαjg and two parameters of
underdetermination. The scaling symmetry allows for
elimination of one parameter, so we set αjr ¼ 1 for some
fixed 0 ≤ jr < jmax. Taking the remaining free parameter to
be αjrþ1 and requiring solutions to be insensitive to the
value of jmax (i.e., stable to truncation), it is straightforward
to construct solutions perturbatively in αjrþ1=αjr . We find a
single solution for jr ¼ 0 and precisely two otherwise
(see Fig. 1).
Stability of quasiperiodic solutions.—Reference [6]

extended single-mode, time-periodic solutions to higher
order in ϵ and found these solutions to be stable to
perturbations. Similarly, we examine the stability of our
extended class of quasiperiodic solutions, both using full
numerical relativity simulations and by numerically solving
the TTF ordinary differential equations.
We consider initial data Ajð0Þ ¼ ϵ expð−μjÞ=ð2jþ 3Þ,

which well approximate jr ¼ 0 quasiperiodic solutions.
Varying μ and also adding random perturbations, we
observe periodic oscillations about the quasiperiodic sol-
ution, providing evidence for stability (see Fig. 2). For
smaller values of μ, energy levels are more closely spaced,
resulting in more rapid energy transfers between modes,
leading to larger-amplitude oscillations. Likewise, larger
random perturbations increase the amplitude of oscillation,
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FIG. 1 (color online). Energy spectra of quasiperiodic solutions
with αjrþ1=αjr ¼ 0.1 for jr ¼ 0; 1; 2; 3. Dashed and solid lines
distinguish different branches for jr > 0. The solid branch is well
approximated by an exponential to each side of jr. For αjrþ1=αjr
too large, it becomes difficult to obtain solutions to Eq. (19), but
for jr ¼ 0, we can go up to α1=α0 ≈ 0.42. (Constructed for
jmax ¼ 30.)
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as the initial data deviate more strongly from a quasiperi-
odic solution. Results from TTF and full numerical
relativity simulations are in close agreement.
Two-mode initial data.—Our main interest is to under-

stand which initial conditions can be expected to collapse.
Thus, it is necessary to study initial data that are not
expected to closely approximate a quasiperiodic solution. A
particularly interesting case consists of two modes initially
excited (all others zero), as this case was key to the
argument of Ref. [5] showing the onset of the turbulent
cascade. In contrast to the results of the previous section,
two-mode initial data

Ajð0Þ ¼
ϵ

3
ðδ0j þ κδ1jÞ ð20Þ

involves considerable energy transfer among modes pro-
vided κ is sufficiently large. [For κ ≪ 1, Eq. (20) may be
considered as a perturbation about single-mode data.] We
examined several choices of κ using both TTF and full
numerical relativity, with similar results. Here, we restrict
to κ ¼ 3=5, the equal-energy case.
The upper envelope of Π2ðx ¼ 0Þ is often used as an

indicator of the onset of instability [5,7,11]. We plot this
quantity in Fig. 3, for both full GR simulations and TTF
solutions with varying jmax. In the full GR simulation,
Π2ðx ¼ 0Þ grows initially, but in contrast to the blowup
observed in Ref. [5] for Gaussian scalar field profile, it then
decreases close to its initial value. This recurrence phe-
nomenon repeats and—for sufficiently small ϵ—collapse
never occurs for as long as we have run the simulation.
Recurrence was also observed in previous work [11] for
broadly distributed Gaussian profiles.
Also in Fig. 3, TTF solutions appear to converge to the full

numerical GR solution as jmax is increased. (Strictly speak-
ing, the TTF and numerical approaches converge as both
jmax → ∞ and ϵ → 0; see the accompanying Supplemental
Material formore discussion [15].) This nicely illustrates the
cascade-collapse mechanism: Higher-j modes are more
sharply peaked at x ¼ 0, so as the (conserved) energy is
transferred to these modes,Π2ðx ¼ 0Þ attains higher values.
Truncating the system at finite jmax artificially places a
bound on values of Π2ðx ¼ 0Þ that can be reached. In
particular, Π2ðx ¼ 0Þ can never blow up for jmax < ∞.

It is useful to examine the solution mode by mode, and in
Fig. 4 we show the energy per mode as a function of time.
Initially, energy is distributed evenly between modes
j¼0;1. It then flows out of mode j ¼ 1 to mode j ¼ 2,
then j ¼ 3, etc. At some point in time, energy begins to
flow back to mode j ¼ 1, an “inverse energy cascade.” By
t ≈ 450, the state has nearly returned to the original
configuration. This recurrence behavior then repeats.
The bottom plot of Fig. 4 illustrates the running time-

average energy per mode ĒjðtÞ≡ t−1
R
t
0 Ejðt0Þdt0. Rather

than cascading to ever-higher modes, the energy sloshes
primarily between low-jmodes, in a “metastable” state. We
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FIG. 2 (color online). Energy per mode for 0 ≤ j ≤ 9 for TTF
solution with initial data Ajð0Þ ∝ expð−0.3jÞ=ð2jþ 3Þ.
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FIG. 3 (color online). Full numerical and TTF results for
two-mode equal-energy initial data with ϵ ¼ 0.09. As jmax is
increased, the TTF solutions achieve better agreement with the
full numerics. Recurrence behavior observed in the full numerical
solution is reasonably well captured by the TTF.
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FIG. 4 (color online). Full numerical (solid lines) and TTF
(dotted lines) energy (top panel) and running time-average energy
(bottom panel) per mode, for two-mode equal-energy initial data.
Notice the repeated approximate return of the initial energies to the
first two modes in the top panel. In the bottom panel, the running
time-average energies approach distinct asymptotic values. For
this run with jmax ¼ 47,

P
11
j¼0 jETTF

j − Enumerical
j j=Etotal does not

exceed 0.19. For jmax ¼ ð31; 23; 15Þ, the bounds are
(0.28,0.42,0.57). (The horizontal offset is partially attributed to
a slight difference in time normalization for our numerical and
TTF codes.)
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never observe thermalization; i.e., no equipartition of
energy occurs.
Figure 4 is remarkably similar in appearance to plots of

FPUT [12] (cf. Figs. 4.1 and 4.2 of Ref. [16].) FPUT
numerically simulated a collection of nonlinearly coupled
harmonic oscillators and expected to see thermalization.
Instead, they observed the same recurrence we see here.
Indeed, as the TTF formulation (17) of our system makes
clear, small-amplitude scalar collapse in AdS reduces
precisely to a (infinite) set of nonlinearly coupled oscil-
lators, so the similar behavior should not be surprising.
More precisely, our system is related to the FPUT-βmodel
[16]. (Of course, the particular resonances and nonlinear
interactions differ between our system and FPUT.)
Predicting when the FPUT system of oscillators thermal-
izes is a longstanding problem in nonlinear dynamics and
is, indeed, known as the FPUT paradox [16–18].
Discussion.—Common intuition suggests that a finite-

sized strongly interacting system driven off equilibrium,
even by a small amount, eventually thermalizes. This
thermalization would imply, via AdS/CFT, that arbitrarily
small perturbations about global AdS must result in
gravitational collapse. However, we have uncovered in
this Letter a large class of initial conditions for a massless,
self-gravitating real scalar field in AdS4 that appears to
avoid collapse. We constructed and evolved these initial
conditions within a newly proposed TTF as well as through
full numerical GR simulations. TTF shows that scalar
perturbations of AdS are in the same universality class
as the famous FPUT problem [12]. Thus, perturbed AdS
spacetimes act as a holographic bridge between nonequili-
brium dynamics of CFTs and the dynamics of nonlinearly
coupled oscillators and the FPUT paradox. In this Letter we
focused on the dynamics of low-energy (2þ 1)-dimen-
sional CFT excitations “prepared” with nonzero expect-
ation values of dimension three (marginal) operators.
Extensions to higher-dimensional CFTs as well as to states
generated by (ir)relevant operators are straightforward.
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